The meta properties of quasi-finite ring homomorphisms. #
A ring hom R →+* S is quasi-finite if S is a quasi-finite R-algebra.
Equations
- f.QuasiFinite = Algebra.QuasiFinite R S
Instances For
theorem
RingHom.QuasiFinite.toAlgebra
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
{f : R →+* S}
(hf : f.QuasiFinite)
:
Helper lemma for the algebraize tactic
theorem
RingHom.QuasiFinite.comp
{T : Type u_3}
[CommRing T]
{R : Type u_4}
{S : Type u_5}
[CommRing R]
[CommRing S]
{f : S →+* T}
{g : R →+* S}
(hf : f.QuasiFinite)
(hg : g.QuasiFinite)
:
(f.comp g).QuasiFinite
theorem
RingHom.QuasiFinite.stableUnderComposition :
StableUnderComposition fun {R S : Type u_6} [CommRing R] [CommRing S] => QuasiFinite
theorem
RingHom.QuasiFinite.respectsIso :
RespectsIso fun {R S : Type u_6} [CommRing R] [CommRing S] => QuasiFinite
theorem
RingHom.QuasiFinite.isStableUnderBaseChange :
IsStableUnderBaseChange fun {R S : Type u_6} [CommRing R] [CommRing S] => QuasiFinite
theorem
RingHom.QuasiFinite.holdsForLocalizationAway :
HoldsForLocalizationAway fun {R S : Type u_6} [CommRing R] [CommRing S] => QuasiFinite
theorem
RingHom.QuasiFinite.ofLocalizationSpanTarget :
OfLocalizationSpanTarget fun {R S : Type u_6} [CommRing R] [CommRing S] => QuasiFinite
theorem
RingHom.QuasiFinite.propertyIsLocal :
PropertyIsLocal fun {R S : Type u_6} [CommRing R] [CommRing S] => QuasiFinite
theorem
RingHom.QuasiFinite.of_isIntegral_of_finiteType
{R : Type u_6}
{S : Type u_7}
{T : Type u_8}
[CommRing R]
[CommRing S]
[CommRing T]
{f : R →+* S}
(hf : f.IsIntegral)
{g : S →+* T}
(hg : g.IsStandardOpenImmersion)
:
(g.comp f).FiniteType → (g.comp f).QuasiFinite
If T is both a finite type R-algebra, and the localization of an integral R-algebra,
then T is quasi-finite over R