Documentation

Mathlib.RingTheory.QuasiFinite.Basic

Quasi-finite algebras #

In this file, we define the notion of quasi-finite algebras and prove basic properties about them

Main definition and results #

class Algebra.QuasiFinite (R : Type u_1) (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] :

We say that an R-algebra S is quasi-finite if κ(p) ⊗[R] S is finite-dimensional over κ(p) for all primes p of R.

This is slightly different from the stacks projects definition, which requires S to be of finite type over R.

Also see Algebra.QuasiFinite.iff_finite_comap_preimage_singleton that this is equivalent to having finite fibers for finite-type algebas.

Instances
    theorem Algebra.QuasiFinite.finite_primesOver {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [QuasiFinite R S] (I : Ideal R) :
    @[instance 100]
    instance Algebra.QuasiFinite.instOfFinite {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [Module.Finite R S] :
    instance Algebra.QuasiFinite.baseChange {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [QuasiFinite R S] {A : Type u_4} [CommRing A] [Algebra R A] :

    Stacks Tag 00PP ((3))

    theorem Algebra.QuasiFinite.trans (R : Type u_1) (S : Type u_2) (T : Type u_3) [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] [Algebra S T] [IsScalarTower R S T] [QuasiFinite R S] [QuasiFinite S T] :

    Stacks Tag 00PO

    theorem Algebra.QuasiFinite.of_surjective_algHom {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] [QuasiFinite R S] (f : S →ₐ[R] T) (hf : Function.Surjective f) :
    instance Algebra.QuasiFinite.instQuotientIdeal {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (I : Ideal S) [QuasiFinite R S] :
    theorem Algebra.QuasiFinite.of_isLocalization {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (M : Submonoid S) [IsLocalization M T] [QuasiFinite R S] :
    @[instance 100]
    theorem Algebra.QuasiFinite.of_restrictScalars (R : Type u_1) (S : Type u_2) (T : Type u_3) [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] [Algebra S T] [IsScalarTower R S T] [QuasiFinite R T] :
    theorem Algebra.QuasiFinite.of_forall_exists_mul_mem_range {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] [QuasiFinite R S] (f : S →ₐ[R] T) (H : ∀ (x : T), ∃ (s : S), IsUnit (f s) x * f s f.range) :
    theorem Algebra.QuasiFinite.eq_of_le_of_under_eq {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [QuasiFinite R S] (P Q : Ideal S) [P.IsPrime] [Q.IsPrime] (h₁ : P Q) (h₂ : Ideal.under R P = Ideal.under R Q) :
    P = Q
    theorem Algebra.QuasiFinite.iff_finite_primesOver {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [FiniteType R S] :
    QuasiFinite R S ∀ (I : Ideal R), I.IsPrime(I.primesOver S).Finite
    theorem Algebra.QuasiFinite.of_isIntegral_of_finiteType {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] [Algebra S T] [IsScalarTower R S T] [Algebra.IsIntegral R S] [FiniteType R T] (s : S) [IsLocalization.Away s T] :

    If T is both a finite type R-algebra, and the localization of an integral R-algebra (away from an element), then T is quasi-finite over R

    @[reducible, inline]
    abbrev Algebra.QuasiFiniteAt (R : Type u_1) {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal S) [p.IsPrime] :

    If S is an R-algebra and p a prime of S, we say that S is R-quasi-finite at p if Sₚ is R-quasi-finite. In the case where S is (essentially) of finite type over R, this is equivalent to the usual definition that p is isolated in its fiber. See Ideal.exists_notMem_forall_mem_of_ne_of_liesOver.

    Equations
    Instances For
      theorem Algebra.QuasiFiniteAt.baseChange {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal S) [p.IsPrime] [QuasiFiniteAt R p] {A : Type u_4} [CommRing A] [Algebra R A] (q : Ideal (TensorProduct R A S)) [q.IsPrime] (hq : p = Ideal.comap TensorProduct.includeRight.toRingHom q) :
      theorem Algebra.QuasiFiniteAt.of_surjectiveOnStalks {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] (p : Ideal S) [p.IsPrime] [QuasiFiniteAt R p] (f : S →ₐ[R] T) (hf : f.SurjectiveOnStalks) (q : Ideal T) [q.IsPrime] (hq : p = Ideal.comap f.toRingHom q) :
      theorem Algebra.QuasiFiniteAt.of_surjectiveOnStalks_of_liesOver {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (p : Ideal S) [p.IsPrime] [QuasiFiniteAt R p] (hf : (algebraMap S T).SurjectiveOnStalks) (q : Ideal T) [q.IsPrime] [q.LiesOver p] :
      instance Algebra.QuasiFiniteAt.comap_algEquiv {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] (p : Ideal S) [p.IsPrime] [QuasiFiniteAt R p] (f : T ≃ₐ[R] S) :
      theorem Algebra.QuasiFiniteAt.of_le {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {P Q : Ideal S} [P.IsPrime] [Q.IsPrime] (h₁ : P Q) [QuasiFiniteAt R Q] :
      theorem Algebra.QuasiFiniteAt.eq_of_le_of_under_eq {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {P Q : Ideal S} [P.IsPrime] [Q.IsPrime] (h₁ : P Q) (h₂ : Ideal.under R P = Ideal.under R Q) [QuasiFiniteAt R Q] :
      P = Q
      theorem Algebra.QuasiFiniteAt.exists_basicOpen_eq_singleton {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal S) [p.IsPrime] [IsArtinianRing R] [EssFiniteType R S] [QuasiFiniteAt R p] :
      fp, (PrimeSpectrum.basicOpen f) = {{ asIdeal := p, isPrime := inst✝ }}

      If R is an artinian ring, and S is a finite type R-algebra R-quasi-finite at p, then {p} is clopen in Spec S.

      theorem Ideal.exists_not_mem_forall_mem_of_ne_of_liesOver {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (q : Ideal S) [q.IsPrime] [q.LiesOver p] [Algebra.EssFiniteType R S] [Algebra.QuasiFiniteAt R q] :
      sq, ∀ (q' : Ideal S), q'.IsPrimeq' qq'.LiesOver ps q'

      R[X] is not quasi-finite over R at any prime.

      If P is a prime of R[X]/I that is quasi finite over R, then I is not contained in (P ∩ R)[X].

      For usability, we replace I by the kernel of a surjective map R[X] →ₐ[R] S.