Documentation

Mathlib.SetTheory.Ordinal.Veblen

Veblen hierarchy #

We define the two-arguments Veblen function, which satisfies veblen 0 a = ω ^ a and that for o ≠ 0, veblen o enumerates the common fixed points of veblen o' for o' < o.

We use this to define two important functions on ordinals: the epsilon function ε_ o = veblen 1 o, and the gamma function Γ_ o enumerating the fixed points of veblen · 0.

Main definitions #

Notation #

The following notation is scoped to the Ordinal namespace.

TODO #

Veblen function with a given starting function #

@[irreducible]

veblenWith f o is the o-th function in the Veblen hierarchy starting with f. This is defined so that

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem Ordinal.veblenWith_of_ne_zero {o : Ordinal.{u}} (f : Ordinal.{u}Ordinal.{u}) (h : o 0) :
    veblenWith f o = derivFamily fun (x : (Set.Iio o)) => veblenWith f x

    veblenWith f o is always normal for o ≠ 0. See isNormal_veblenWith for a version which assumes IsNormal f.

    veblenWith f o is always normal whenever f is. See isNormal_veblenWith' for a version which does not assume IsNormal f.

    Alias of Ordinal.isNormal_veblenWith.


    veblenWith f o is always normal whenever f is. See isNormal_veblenWith' for a version which does not assume IsNormal f.

    theorem Ordinal.veblenWith_veblenWith_of_lt {f : Ordinal.{u}Ordinal.{u}} {o₁ o₂ : Ordinal.{u}} (hf : IsNormal f) (h : o₁ < o₂) (a : Ordinal.{u}) :
    veblenWith f o₁ (veblenWith f o₂ a) = veblenWith f o₂ a
    @[simp]
    theorem Ordinal.veblenWith_inj {f : Ordinal.{u}Ordinal.{u}} {o a b : Ordinal.{u}} (hf : IsNormal f) :
    veblenWith f o a = veblenWith f o b a = b
    theorem Ordinal.veblenWith_pos {f : Ordinal.{u}Ordinal.{u}} {o a : Ordinal.{u}} (hf : IsNormal f) (hp : 0 < f 0) :
    0 < veblenWith f o a
    theorem Ordinal.veblenWith_zero_lt_veblenWith_zero {f : Ordinal.{u}Ordinal.{u}} {o₁ o₂ : Ordinal.{u}} (hf : IsNormal f) (hp : 0 < f 0) :
    veblenWith f o₁ 0 < veblenWith f o₂ 0 o₁ < o₂
    theorem Ordinal.veblenWith_zero_le_veblenWith_zero {f : Ordinal.{u}Ordinal.{u}} {o₁ o₂ : Ordinal.{u}} (hf : IsNormal f) (hp : 0 < f 0) :
    veblenWith f o₁ 0 veblenWith f o₂ 0 o₁ o₂
    theorem Ordinal.veblenWith_zero_inj {f : Ordinal.{u}Ordinal.{u}} {o₁ o₂ : Ordinal.{u}} (hf : IsNormal f) (hp : 0 < f 0) :
    veblenWith f o₁ 0 = veblenWith f o₂ 0 o₁ = o₂
    theorem Ordinal.left_le_veblenWith {f : Ordinal.{u}Ordinal.{u}} (hf : IsNormal f) (hp : 0 < f 0) (o a : Ordinal.{u}) :
    o veblenWith f o a
    theorem Ordinal.IsNormal.veblenWith_zero {f : Ordinal.{u}Ordinal.{u}} (hf : IsNormal f) (hp : 0 < f 0) :
    IsNormal fun (x : Ordinal.{u}) => veblenWith f x 0
    theorem Ordinal.cmp_veblenWith {f : Ordinal.{u}Ordinal.{u}} {o₁ o₂ a b : Ordinal.{u}} (hf : IsNormal f) :
    cmp (veblenWith f o₁ a) (veblenWith f o₂ b) = match cmp o₁ o₂ with | Ordering.eq => cmp a b | Ordering.lt => cmp a (veblenWith f o₂ b) | Ordering.gt => cmp (veblenWith f o₁ a) b
    theorem Ordinal.veblenWith_lt_veblenWith_iff {f : Ordinal.{u}Ordinal.{u}} {o₁ o₂ a b : Ordinal.{u}} (hf : IsNormal f) :
    veblenWith f o₁ a < veblenWith f o₂ b o₁ = o₂ a < b o₁ < o₂ a < veblenWith f o₂ b o₂ < o₁ veblenWith f o₁ a < b

    veblenWith f o₁ a < veblenWith f o₂ b iff one of the following holds:

    • o₁ = o₂ and a < b
    • o₁ < o₂ and a < veblenWith f o₂ b
    • o₁ > o₂ and veblenWith f o₁ a < b
    theorem Ordinal.veblenWith_le_veblenWith_iff {f : Ordinal.{u}Ordinal.{u}} {o₁ o₂ a b : Ordinal.{u}} (hf : IsNormal f) :
    veblenWith f o₁ a veblenWith f o₂ b o₁ = o₂ a b o₁ < o₂ a veblenWith f o₂ b o₂ < o₁ veblenWith f o₁ a b

    veblenWith f o₁ a ≤ veblenWith f o₂ b iff one of the following holds:

    • o₁ = o₂ and a ≤ b
    • o₁ < o₂ and a ≤ veblenWith f o₂ b
    • o₁ > o₂ and veblenWith f o₁ a ≤ b
    theorem Ordinal.veblenWith_eq_veblenWith_iff {f : Ordinal.{u}Ordinal.{u}} {o₁ o₂ a b : Ordinal.{u}} (hf : IsNormal f) :
    veblenWith f o₁ a = veblenWith f o₂ b o₁ = o₂ a = b o₁ < o₂ a = veblenWith f o₂ b o₂ < o₁ veblenWith f o₁ a = b

    veblenWith f o₁ a = veblenWith f o₂ b iff one of the following holds:

    • o₁ = o₂ and a = b
    • o₁ < o₂ and a = veblenWith f o₂ b
    • o₁ > o₂ and veblenWith f o₁ a = b

    Veblen function #

    veblen o is the o-th function in the Veblen hierarchy starting with ω ^ ·. That is:

    • veblen 0 a = ω ^ a.
    • veblen o for o ≠ 0 enumerates the fixed points of veblen o' for o' < o.
    Equations
    Instances For
      @[simp]
      theorem Ordinal.veblen_zero :
      veblen 0 = fun (a : Ordinal.{u_1}) => omega0 ^ a
      theorem Ordinal.veblen_of_ne_zero {o : Ordinal.{u}} (h : o 0) :
      veblen o = derivFamily fun (x : (Set.Iio o)) => veblen x
      theorem Ordinal.veblen_veblen_of_lt {o₁ o₂ : Ordinal.{u}} (h : o₁ < o₂) (a : Ordinal.{u}) :
      veblen o₁ (veblen o₂ a) = veblen o₂ a
      @[simp]
      theorem Ordinal.veblen_inj {o a b : Ordinal.{u}} :
      veblen o a = veblen o b a = b
      @[simp]
      theorem Ordinal.veblen_pos {o a : Ordinal.{u}} :
      0 < veblen o a
      @[simp]
      theorem Ordinal.veblen_zero_lt_veblen_zero {o₁ o₂ : Ordinal.{u}} :
      veblen o₁ 0 < veblen o₂ 0 o₁ < o₂
      @[simp]
      theorem Ordinal.veblen_zero_le_veblen_zero {o₁ o₂ : Ordinal.{u}} :
      veblen o₁ 0 veblen o₂ 0 o₁ o₂
      @[simp]
      theorem Ordinal.veblen_zero_inj {o₁ o₂ : Ordinal.{u}} :
      veblen o₁ 0 = veblen o₂ 0 o₁ = o₂
      theorem Ordinal.cmp_veblen {o₁ o₂ a b : Ordinal.{u}} :
      cmp (veblen o₁ a) (veblen o₂ b) = match cmp o₁ o₂ with | Ordering.eq => cmp a b | Ordering.lt => cmp a (veblen o₂ b) | Ordering.gt => cmp (veblen o₁ a) b
      theorem Ordinal.veblen_lt_veblen_iff {o₁ o₂ a b : Ordinal.{u}} :
      veblen o₁ a < veblen o₂ b o₁ = o₂ a < b o₁ < o₂ a < veblen o₂ b o₂ < o₁ veblen o₁ a < b

      veblen o₁ a < veblen o₂ b iff one of the following holds:

      • o₁ = o₂ and a < b
      • o₁ < o₂ and a < veblen o₂ b
      • o₁ > o₂ and veblen o₁ a < b
      theorem Ordinal.veblen_le_veblen_iff {o₁ o₂ a b : Ordinal.{u}} :
      veblen o₁ a veblen o₂ b o₁ = o₂ a b o₁ < o₂ a veblen o₂ b o₂ < o₁ veblen o₁ a b

      veblen o₁ a ≤ veblen o₂ b iff one of the following holds:

      • o₁ = o₂ and a ≤ b
      • o₁ < o₂ and a ≤ veblen o₂ b
      • o₁ > o₂ and veblen o₁ a ≤ b
      theorem Ordinal.veblen_eq_veblen_iff {o₁ o₂ a b : Ordinal.{u}} :
      veblen o₁ a = veblen o₂ b o₁ = o₂ a = b o₁ < o₂ a = veblen o₂ b o₂ < o₁ veblen o₁ a = b

      veblen o₁ a ≤ veblen o₂ b iff one of the following holds:

      • o₁ = o₂ and a = b
      • o₁ < o₂ and a = veblen o₂ b
      • o₁ > o₂ and veblen o₁ a = b

      Epsilon function #

      @[reducible, inline]

      The epsilon function enumerates the fixed points of ω ^ ⬝. This is an abbreviation for veblen 1.

      Equations
      Instances For

        The epsilon function enumerates the fixed points of ω ^ ⬝. This is an abbreviation for veblen 1.

        Equations
        Instances For

          ε₀ is the first fixed point of ω ^ ⬝, i.e. the supremum of ω, ω ^ ω, ω ^ ω ^ ω, …

          Equations
          Instances For
            theorem Ordinal.lt_epsilon0 {o : Ordinal.{u}} :
            o < epsilon 0 ∃ (n : ), o < (fun (a : Ordinal.{u}) => omega0 ^ a)^[n] 0

            ε₀ is the limit of 0, ω ^ 0, ω ^ ω ^ 0, …

            ω ^ ω ^ … ^ 0 < ε₀

            Gamma function #

            The gamma function enumerates the fixed points of veblen · 0.

            Of particular importance is Γ₀ = gamma 0, the Feferman-Schütte ordinal.

            Equations
            Instances For

              The gamma function enumerates the fixed points of veblen · 0.

              Of particular importance is Γ₀ = gamma 0, the Feferman-Schütte ordinal.

              Equations
              Instances For

                The Feferman-Schütte ordinal Γ₀ is the smallest fixed point of veblen · 0, i.e. the supremum of veblen ε₀ 0, veblen (veblen ε₀ 0) 0, etc.

                Equations
                Instances For
                  @[simp]
                  @[simp]
                  @[simp]
                  theorem Ordinal.gamma_inj {a b : Ordinal.{u}} :
                  a.gamma = b.gamma a = b
                  theorem Ordinal.gamma0_eq_nfp :
                  gamma 0 = nfp (fun (x : Ordinal.{u_1}) => veblen x 0) 0
                  theorem Ordinal.lt_gamma0 {o : Ordinal.{u}} :
                  o < gamma 0 ∃ (n : ), o < (fun (a : Ordinal.{u}) => veblen a 0)^[n] 0

                  Γ₀ is the limit of 0, veblen 0 0, veblen (veblen 0 0) 0, …

                  theorem Ordinal.iterate_veblen_lt_gamma0 (n : ) :
                  (fun (a : Ordinal.{u_1}) => veblen a 0)^[n] 0 < gamma 0

                  veblen (veblen … (veblen 0 0) … 0) 0 < Γ₀

                  @[simp]