Veblen hierarchy #
We define the two-arguments Veblen function, which satisfies veblen 0 a = ω ^ a
and that for
o ≠ 0
, veblen o
enumerates the common fixed points of veblen o'
for o' < o
.
Main definitions #
veblenWith
: The Veblen hierarchy with a specified initial function.veblen
: The Veblen hierarchy starting withω ^ ·
.
TODO #
- Define the epsilon numbers and gamma numbers.
- Prove that
ε₀
andΓ₀
are countable. - Prove that the exponential principal ordinals are the epsilon ordinals (and 0, 1, 2, ω).
- Prove that the ordinals principal under
veblen
are the gamma ordinals (and 0).
Veblen function with a given starting function #
veblenWith f o
is the o
-th function in the Veblen hierarchy starting with f
. This is
defined so that
veblenWith f 0 = f
.veblenWith f o
foro ≠ 0
enumerates the common fixed points ofveblenWith f o'
over allo' < o
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
veblenWith f o
is always normal for o ≠ 0
. See isNormal_veblenWith
for a version which
assumes IsNormal f
.
veblenWith f o
is always normal whenever f
is. See isNormal_veblenWith'
for a version
which does not assume IsNormal f
.
Alias of Ordinal.isNormal_veblenWith
.
veblenWith f o
is always normal whenever f
is. See isNormal_veblenWith'
for a version
which does not assume IsNormal f
.
veblenWith f o₁ a < veblenWith f o₂ b
iff one of the following holds:
o₁ = o₂
anda < b
o₁ < o₂
anda < veblenWith f o₂ b
o₁ > o₂
andveblenWith f o₁ a < b
veblenWith f o₁ a ≤ veblenWith f o₂ b
iff one of the following holds:
o₁ = o₂
anda ≤ b
o₁ < o₂
anda ≤ veblenWith f o₂ b
o₁ > o₂
andveblenWith f o₁ a ≤ b
veblenWith f o₁ a = veblenWith f o₂ b
iff one of the following holds:
o₁ = o₂
anda = b
o₁ < o₂
anda = veblenWith f o₂ b
o₁ > o₂
andveblenWith f o₁ a = b
Veblen function #
veblen o
is the o
-th function in the Veblen hierarchy starting with ω ^ ·
. That is:
Equations
- Ordinal.veblen = Ordinal.veblenWith fun (x : Ordinal.{?u.6}) => Ordinal.omega0 ^ x