Theory of topological modules #
We use the class ContinuousSMul
for topological (semi) modules and topological vector spaces.
If M
is a topological module over R
and 0
is a limit of invertible elements of R
, then
⊤
is the only submodule of M
with a nonempty interior.
This is the case, e.g., if R
is a nontrivially normed field.
Let R
be a topological ring such that zero is not an isolated point (e.g., a nontrivially
normed field, see NormedField.punctured_nhds_neBot
). Let M
be a nontrivial module over R
such that c • x = 0
implies c = 0 ∨ x = 0
. Then M
has no isolated points. We formulate this
using NeBot (𝓝[≠] x)
.
This lemma is not an instance because Lean would need to find [ContinuousSMul ?m_1 M]
with
unknown ?m_1
. We register this as an instance for R = ℝ
in Real.punctured_nhds_module_neBot
.
One can also use haveI := Module.punctured_nhds_neBot R M
in a proof.
The span of a separable subset with respect to a separable scalar ring is again separable.
The (topological-space) closure of a submodule of a topological R
-module M
is itself
a submodule.
Equations
- s.topologicalClosure = { toAddSubmonoid := s.topologicalClosure, smul_mem' := ⋯ }
Instances For
The topological closure of a closed submodule s
is equal to s
.
A subspace is dense iff its topological closure is the entire space.
A maximal proper subspace of a topological module (i.e a Submodule
satisfying IsCoatom
)
is either closed or dense.
Constructs a bundled linear map from a function and a proof that this function belongs to the closure of the set of linear maps.
Equations
- linearMapOfMemClosureRangeCoe f hf = { toFun := (↑(addMonoidHomOfMemClosureRangeCoe f hf)).toFun, map_add' := ⋯, map_smul' := ⋯ }
Instances For
Construct a bundled linear map from a pointwise limit of linear maps
Equations
- linearMapOfTendsto f g h = linearMapOfMemClosureRangeCoe f ⋯
Instances For
Equations
- QuotientModule.Quotient.topologicalSpace S = inferInstanceAs (TopologicalSpace (Quotient S.quotientRel))