Documentation

Mathlib.Topology.Algebra.SeparationQuotient.Basic

Algebraic operations on SeparationQuotient #

In this file we define algebraic operations (multiplication, addition etc) on the separation quotient of a topological space with corresponding operation, provided that the original operation is continuous.

We also prove continuity of these operations and show that they satisfy the same kind of laws (Monoid etc) as the original ones.

Finally, we construct a section of the quotient map which is a continuous linear map SeparationQuotient E →L[K] E.

Equations
  • SeparationQuotient.instSMul = { smul := fun (c : M) => Quotient.map' (fun (x : X) => c x) }
Equations
  • SeparationQuotient.instVAdd = { vadd := fun (c : M) => Quotient.map' (fun (x : X) => c +ᵥ x) }
@[simp]
@[simp]
Equations
  • SeparationQuotient.instSMulZeroClass = { toFun := SeparationQuotient.mk, map_zero' := }.smulZeroClass
Equations
Equations
Equations
  • SeparationQuotient.instMul = { mul := Quotient.map₂ (fun (x1 x2 : M) => x1 * x2) }
Equations
  • SeparationQuotient.instAdd = { add := Quotient.map₂ (fun (x1 x2 : M) => x1 + x2) }
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations

SeparationQuotient.mk as a MonoidHom.

Equations
  • SeparationQuotient.mkMonoidHom = { toFun := SeparationQuotient.mk, map_one' := , map_mul' := }
Instances For

    SeparationQuotient.mk as an AddMonoidHom.

    Equations
    • SeparationQuotient.mkAddMonoidHom = { toFun := SeparationQuotient.mk, map_zero' := , map_add' := }
    Instances For
      @[simp]
      theorem SeparationQuotient.mkAddMonoidHom_apply {M : Type u_1} [TopologicalSpace M] [AddZeroClass M] [ContinuousAdd M] (a✝ : M) :
      SeparationQuotient.mkAddMonoidHom a✝ = SeparationQuotient.mk a✝
      @[simp]
      theorem SeparationQuotient.mkMonoidHom_apply {M : Type u_1} [TopologicalSpace M] [MulOneClass M] [ContinuousMul M] (a✝ : M) :
      SeparationQuotient.mkMonoidHom a✝ = SeparationQuotient.mk a✝
      Equations
      • SeparationQuotient.instNSmul = inferInstance
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      • SeparationQuotient.instNeg = { neg := Quotient.map' (fun (x : G) => -x) }
      Equations
      Equations
      Equations
      Equations
      Equations
      • SeparationQuotient.instDiv = { div := Quotient.map₂ (fun (x1 x2 : G) => x1 / x2) }
      Equations
      • SeparationQuotient.instSub = { sub := Quotient.map₂ (fun (x1 x2 : G) => x1 - x2) }
      Equations
      • SeparationQuotient.instZSMul = inferInstance
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations
      Equations

      SeparationQuotient.mk as a RingHom.

      Equations
      • SeparationQuotient.mkRingHom = { toFun := SeparationQuotient.mk, map_one' := , map_mul' := , map_zero' := , map_add' := }
      Instances For
        @[simp]
        theorem SeparationQuotient.mkRingHom_apply {R : Type u_1} [TopologicalSpace R] [NonAssocSemiring R] [TopologicalSemiring R] (a✝ : R) :
        SeparationQuotient.mkRingHom a✝ = SeparationQuotient.mk a✝
        Equations
        Equations
        Equations
        Equations

        SeparationQuotient.mk as a continuous linear map.

        Equations
        Instances For
          Equations