Documentation

Mathlib.Topology.Gluing

Gluing Topological spaces #

Given a family of gluing data (see Mathlib/CategoryTheory/GlueData.lean), we can then glue them together.

The construction should be "sealed" and considered as a black box, while only using the API provided.

Main definitions #

Main results #

A family of gluing data consists of

  1. An index type J
  2. An object U i for each i : J.
  3. An object V i j for each i j : J. (Note that this is J × JTopCat rather than JJTopCat to connect to the limits library easier.)
  4. An open embedding f i j : V i j ⟶ U i for each i j : ι.
  5. A transition map t i j : V i j ⟶ V j i for each i j : ι. such that
  6. f i i is an isomorphism.
  7. t i i is the identity.
  8. V i j ×[U i] V i k ⟶ V i j ⟶ V j i factors through V j k ×[U j] V j i ⟶ V j i via some t' : V i j ×[U i] V i k ⟶ V j k ×[U j] V j i. (This merely means that V i j ∩ V i k ⊆ t i j ⁻¹' (V j i ∩ V j k).)
  9. t' i j k ≫ t' j k i ≫ t' k i j = 𝟙 _.

We can then glue the topological spaces U i together by identifying V i j with V j i, such that the U i's are open subspaces of the glued space.

Most of the times it would be easier to use the constructor TopCat.GlueData.mk' where the conditions are stated in a less categorical way.

Instances For
    theorem TopCat.GlueData.isOpen_iff (D : GlueData) (U : Set D.glued) :
    IsOpen U ∀ (i : D.J), IsOpen ((D i) ⁻¹' U)
    theorem TopCat.GlueData.ι_jointly_surjective (D : GlueData) (x : D.glued) :
    ∃ (i : D.J) (y : (D.U i)), (D i) y = x
    def TopCat.GlueData.Rel (D : GlueData) (a b : (i : D.J) × (D.U i)) :

    An equivalence relation on Σ i, D.U i that holds iff 𝖣 .ι i x = 𝖣 .ι j y. See TopCat.GlueData.ι_eq_iff_rel.

    Equations
    • D.Rel a b = (a = b ∃ (x : (D.V (a.fst, b.fst))), (D.f a.fst b.fst) x = a.snd (D.f b.fst a.fst) ((D.t a.fst b.fst) x) = b.snd)
    Instances For
      theorem TopCat.GlueData.eqvGen_of_π_eq (D : GlueData) {x y : ( D.U)} (h : D x = D y) :
      Relation.EqvGen (CategoryTheory.Limits.Types.CoequalizerRel D.diagram.fstSigmaMap D.diagram.sndSigmaMap) x y
      theorem TopCat.GlueData.ι_eq_iff_rel (D : GlueData) (i j : D.J) (x : (D.U i)) (y : (D.U j)) :
      (D i) x = (D j) y D.Rel i, x j, y
      theorem TopCat.GlueData.image_inter (D : GlueData) (i j : D.J) :
      Set.range (D i) Set.range (D j) = Set.range (CategoryTheory.CategoryStruct.comp (D.f i j) (D i))
      theorem TopCat.GlueData.preimage_range (D : GlueData) (i j : D.J) :
      (D j) ⁻¹' Set.range (D i) = Set.range (D.f j i)
      theorem TopCat.GlueData.preimage_image_eq_image (D : GlueData) (i j : D.J) (U : Set (D.U i)) :
      (D j) ⁻¹' ((D i) '' U) = (D.f j i) '' ((CategoryTheory.CategoryStruct.comp (D.t j i) (D.f i j)) ⁻¹' U)
      theorem TopCat.GlueData.preimage_image_eq_image' (D : GlueData) (i j : D.J) (U : Set (D.U i)) :
      (D j) ⁻¹' ((D i) '' U) = (CategoryTheory.CategoryStruct.comp (D.t i j) (D.f j i)) '' ((D.f i j) ⁻¹' U)
      theorem TopCat.GlueData.open_image_open (D : GlueData) (i : D.J) (U : TopologicalSpace.Opens (D.U i)) :
      IsOpen ((D i) '' U)
      @[deprecated TopCat.GlueData.ι_isOpenEmbedding (since := "2024-10-18")]

      Alias of TopCat.GlueData.ι_isOpenEmbedding.

      structure TopCat.GlueData.MkCore :
      Type (u + 1)

      A family of gluing data consists of

      1. An index type J
      2. A bundled topological space U i for each i : J.
      3. An open set V i j ⊆ U i for each i j : J.
      4. A transition map t i j : V i j ⟶ V j i for each i j : ι. such that
      5. V i i = U i.
      6. t i i is the identity.
      7. For each x ∈ V i j ∩ V i k, t i j x ∈ V j k.
      8. t j k (t i j x) = t i k x.

      We can then glue the topological spaces U i together by identifying V i j with V j i.

      • J : Type u
      • U : self.JTopCat
      • V (i a✝ : self.J) : TopologicalSpace.Opens (self.U i)
      • t (i j : self.J) : (TopologicalSpace.Opens.toTopCat (self.U i)).obj (self.V i j) (TopologicalSpace.Opens.toTopCat (self.U j)).obj (self.V j i)
      • V_id (i : self.J) : self.V i i =
      • t_id (i : self.J) : (self.t i i) = id
      • t_inter ⦃i j : self.J (k : self.J) (x : (self.V i j)) : x self.V i k((self.t i j) x) self.V j k
      • cocycle (i j k : self.J) (x : (self.V i j)) (h : x self.V i k) : ((self.t j k) ((self.t i j) x), ) = ((self.t i k) x, h)
      Instances For
        theorem TopCat.GlueData.MkCore.t_inv (h : MkCore) (i j : h.J) (x : (h.V j i)) :
        (h.t i j) ((h.t j i) x) = x
        instance TopCat.GlueData.instIsIsoT (h : MkCore) (i j : h.J) :
        def TopCat.GlueData.MkCore.t' (h : MkCore) (i j k : h.J) :
        CategoryTheory.Limits.pullback (h.V i j).inclusion' (h.V i k).inclusion' CategoryTheory.Limits.pullback (h.V j k).inclusion' (h.V j i).inclusion'

        (Implementation) the restricted transition map to be fed into TopCat.GlueData.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          This is a constructor of TopCat.GlueData whose arguments are in terms of elements and intersections rather than subobjects and pullbacks. Please refer to TopCat.GlueData.MkCore for details.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            We may construct a glue data from a family of open sets.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem TopCat.GlueData.ofOpenSubsets_toGlueData_U {α : Type u} [TopologicalSpace α] {J : Type u} (U : JTopologicalSpace.Opens α) (a✝ : (MkCore.mk (fun (i : J) => (TopologicalSpace.Opens.toTopCat (of α)).obj (U i)) (fun (x j : J) => (TopologicalSpace.Opens.map (U x).inclusion').obj (U j)) (fun (i j : J) => { toFun := fun (x : ((TopologicalSpace.Opens.toTopCat ((fun (i : J) => (TopologicalSpace.Opens.toTopCat (of α)).obj (U i)) i)).obj ((fun (x j : J) => (TopologicalSpace.Opens.map (U x).inclusion').obj (U j)) i j))) => x, , , continuous_toFun := }) ).J) :
              (ofOpenSubsets U).U a✝ = (TopologicalSpace.Opens.toTopCat (of α)).obj (U a✝)
              @[simp]
              theorem TopCat.GlueData.ofOpenSubsets_toGlueData_V {α : Type u} [TopologicalSpace α] {J : Type u} (U : JTopologicalSpace.Opens α) (i : (MkCore.mk (fun (i : J) => (TopologicalSpace.Opens.toTopCat (of α)).obj (U i)) (fun (x j : J) => (TopologicalSpace.Opens.map (U x).inclusion').obj (U j)) (fun (i j : J) => { toFun := fun (x : ((TopologicalSpace.Opens.toTopCat ((fun (i : J) => (TopologicalSpace.Opens.toTopCat (of α)).obj (U i)) i)).obj ((fun (x j : J) => (TopologicalSpace.Opens.map (U x).inclusion').obj (U j)) i j))) => x, , , continuous_toFun := }) ).J × (MkCore.mk (fun (i : J) => (TopologicalSpace.Opens.toTopCat (of α)).obj (U i)) (fun (x j : J) => (TopologicalSpace.Opens.map (U x).inclusion').obj (U j)) (fun (i j : J) => { toFun := fun (x : ((TopologicalSpace.Opens.toTopCat ((fun (i : J) => (TopologicalSpace.Opens.toTopCat (of α)).obj (U i)) i)).obj ((fun (x j : J) => (TopologicalSpace.Opens.map (U x).inclusion').obj (U j)) i j))) => x, , , continuous_toFun := }) ).J) :
              (ofOpenSubsets U).V i = (TopologicalSpace.Opens.toTopCat ((TopologicalSpace.Opens.toTopCat (of α)).obj (U i.1))).obj ((TopologicalSpace.Opens.map (U i.1).inclusion').obj (U i.2))
              @[simp]
              theorem TopCat.GlueData.ofOpenSubsets_toGlueData_f {α : Type u} [TopologicalSpace α] {J : Type u} (U : JTopologicalSpace.Opens α) (i j : (MkCore.mk (fun (i : J) => (TopologicalSpace.Opens.toTopCat (of α)).obj (U i)) (fun (x j : J) => (TopologicalSpace.Opens.map (U x).inclusion').obj (U j)) (fun (i j : J) => { toFun := fun (x : ((TopologicalSpace.Opens.toTopCat ((fun (i : J) => (TopologicalSpace.Opens.toTopCat (of α)).obj (U i)) i)).obj ((fun (x j : J) => (TopologicalSpace.Opens.map (U x).inclusion').obj (U j)) i j))) => x, , , continuous_toFun := }) ).J) :
              (ofOpenSubsets U).f i j = ((TopologicalSpace.Opens.map (U i).inclusion').obj (U j)).inclusion'
              @[simp]
              theorem TopCat.GlueData.ofOpenSubsets_toGlueData_t {α : Type u} [TopologicalSpace α] {J : Type u} (U : JTopologicalSpace.Opens α) (i j : (MkCore.mk (fun (i : J) => (TopologicalSpace.Opens.toTopCat (of α)).obj (U i)) (fun (x j : J) => (TopologicalSpace.Opens.map (U x).inclusion').obj (U j)) (fun (i j : J) => { toFun := fun (x : ((TopologicalSpace.Opens.toTopCat ((fun (i : J) => (TopologicalSpace.Opens.toTopCat (of α)).obj (U i)) i)).obj ((fun (x j : J) => (TopologicalSpace.Opens.map (U x).inclusion').obj (U j)) i j))) => x, , , continuous_toFun := }) ).J) :
              (ofOpenSubsets U).t i j = { toFun := fun (x : ((TopologicalSpace.Opens.toTopCat ((TopologicalSpace.Opens.toTopCat (of α)).obj (U i))).obj ((TopologicalSpace.Opens.map (U i).inclusion').obj (U j)))) => x, , , continuous_toFun := }

              The canonical map from the glue of a family of open subsets α into α. This map is an open embedding (fromOpenSubsetsGlue_isOpenEmbedding), and its range is ⋃ i, (U i : Set α) (range_fromOpenSubsetsGlue).

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem TopCat.GlueData.ι_fromOpenSubsetsGlue_apply {α : Type u} [TopologicalSpace α] {J : Type u} (U : JTopologicalSpace.Opens α) (i : J) (x : (CategoryTheory.forget TopCat).obj ((ofOpenSubsets U).U i)) :
                (fromOpenSubsetsGlue U) (((ofOpenSubsets U) i) x) = (U i).inclusion' x
                @[deprecated TopCat.GlueData.fromOpenSubsetsGlue_isOpenEmbedding (since := "2024-10-18")]

                Alias of TopCat.GlueData.fromOpenSubsetsGlue_isOpenEmbedding.

                theorem TopCat.GlueData.range_fromOpenSubsetsGlue {α : Type u} [TopologicalSpace α] {J : Type u} (U : JTopologicalSpace.Opens α) :
                Set.range (fromOpenSubsetsGlue U) = ⋃ (i : J), (U i)
                def TopCat.GlueData.openCoverGlueHomeo {α : Type u} [TopologicalSpace α] {J : Type u} (U : JTopologicalSpace.Opens α) (h : ⋃ (i : J), (U i) = Set.univ) :
                (ofOpenSubsets U).glued ≃ₜ α

                The gluing of an open cover is homeomomorphic to the original space.

                Equations
                Instances For