Documentation

Mathlib.Topology.Separation.DisjointCover

Disjoint covers of profinite spaces #

We show that if X is a profinite space, then any open covering of X can be refined to a finite covering by disjoint nonempty clopens.

theorem TopologicalSpace.IsOpenCover.exists_finite_clopen_cover {ι : Type u_1} {X : Type u_2} [TopologicalSpace X] [TotallyDisconnectedSpace X] [T2Space X] [CompactSpace X] {U : ιOpens X} (hU : IsOpenCover U) :
∃ (n : ) (V : Fin nClopens X), (∀ (j : Fin n), ∃ (i : ι), (V j) (U i)) Set.univ ⋃ (j : Fin n), (V j)

Any open cover of a profinite space can be refined to a finite cover by clopens.

theorem TopologicalSpace.IsOpenCover.exists_finite_nonempty_disjoint_clopen_cover {ι : Type u_1} {X : Type u_2} [TopologicalSpace X] [TotallyDisconnectedSpace X] [T2Space X] [CompactSpace X] {U : ιOpens X} (hU : IsOpenCover U) :
∃ (n : ) (W : Fin nClopens X), (∀ (j : Fin n), W j ∃ (i : ι), (W j) (U i)) Set.univ ⋃ (j : Fin n), (W j) Pairwise (Function.onFun Disjoint W)

Any open cover of a profinite space can be refined to a finite cover by pairwise disjoint nonempty clopens.