Operations on sheaves #
Main definition #
SubmonoidPresheaf
: A subpresheaf with a submonoid structure on each of the components.LocalizationPresheaf
: The localization of a presheaf of commrings at aSubmonoidPresheaf
.TotalQuotientPresheaf
: The presheaf of total quotient rings.
structure
TopCat.Presheaf.SubmonoidPresheaf
{X : TopCat}
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.ConcreteCategory C]
[(X : C) → MulOneClass ((CategoryTheory.forget C).obj X)]
[(X Y : C) → MonoidHomClass (X ⟶ Y) ((CategoryTheory.forget C).obj X) ((CategoryTheory.forget C).obj Y)]
(F : TopCat.Presheaf C X)
:
Type (max u_1 w)
- obj : (U : (TopologicalSpace.Opens ↑X)ᵒᵖ) → Submonoid ((CategoryTheory.forget C).obj (F.obj U))
- map : ∀ {U V : (TopologicalSpace.Opens ↑X)ᵒᵖ} (i : U ⟶ V), TopCat.Presheaf.SubmonoidPresheaf.obj s U ≤ Submonoid.comap (F.map i) (TopCat.Presheaf.SubmonoidPresheaf.obj s V)
A subpresheaf with a submonoid structure on each of the components.
Instances For
noncomputable def
TopCat.Presheaf.SubmonoidPresheaf.localizationPresheaf
{X : TopCat}
{F : TopCat.Presheaf CommRingCat X}
(G : TopCat.Presheaf.SubmonoidPresheaf F)
:
The localization of a presheaf of CommRing
s with respect to a SubmonoidPresheaf
.
Instances For
instance
TopCat.Presheaf.instAlgebraObjCommRingCatToQuiverToCategoryStructInstCommRingCatLargeCategoryTypeTypesToPrefunctorForgetInstConcreteCategoryCommRingCatInstCommRingCatLargeCategoryObjOppositeOpensαTopologicalSpaceTopologicalSpace_coeToQuiverToCategoryStructOppositeSmallCategoryToPreorderToPartialOrderToCompleteSemilatticeInfInstCompleteLatticeOpensToPrefunctorCommRingLocalizationPresheafToCommSemiringInstCommRing'ToSemiringInstCommRingα
{X : TopCat}
{F : TopCat.Presheaf CommRingCat X}
(G : TopCat.Presheaf.SubmonoidPresheaf F)
(U : (TopologicalSpace.Opens ↑X)ᵒᵖ)
:
Algebra ((CategoryTheory.forget CommRingCat).obj (F.obj U))
↑((TopCat.Presheaf.SubmonoidPresheaf.localizationPresheaf G).obj U)
instance
TopCat.Presheaf.instIsLocalizationObjCommRingCatToQuiverToCategoryStructInstCommRingCatLargeCategoryTypeTypesToPrefunctorForgetInstConcreteCategoryCommRingCatInstCommRingCatLargeCategoryObjOppositeOpensαTopologicalSpaceTopologicalSpace_coeToQuiverToCategoryStructOppositeSmallCategoryToPreorderToPartialOrderToCompleteSemilatticeInfInstCompleteLatticeOpensToPrefunctorToCommSemiringInstCommRing'ObjToMulOneClassToMulZeroOneClassToNonAssocSemiringToSemiringToMonoidHomClassHomCommRingInstCommRingαInstRingHomClassLocalizationPresheafInstAlgebraObjCommRingCatToQuiverToCategoryStructInstCommRingCatLargeCategoryTypeTypesToPrefunctorForgetInstConcreteCategoryCommRingCatInstCommRingCatLargeCategoryObjOppositeOpensαTopologicalSpaceTopologicalSpace_coeToQuiverToCategoryStructOppositeSmallCategoryToPreorderToPartialOrderToCompleteSemilatticeInfInstCompleteLatticeOpensToPrefunctorCommRingLocalizationPresheafToCommSemiringInstCommRing'ToSemiringInstCommRingα
{X : TopCat}
{F : TopCat.Presheaf CommRingCat X}
(G : TopCat.Presheaf.SubmonoidPresheaf F)
(U : (TopologicalSpace.Opens ↑X)ᵒᵖ)
:
@[simp]
theorem
TopCat.Presheaf.SubmonoidPresheaf.toLocalizationPresheaf_app
{X : TopCat}
{F : TopCat.Presheaf CommRingCat X}
(G : TopCat.Presheaf.SubmonoidPresheaf F)
(U : (TopologicalSpace.Opens ↑X)ᵒᵖ)
:
(TopCat.Presheaf.SubmonoidPresheaf.toLocalizationPresheaf G).app U = CommRingCat.ofHom (algebraMap (↑(F.obj U)) (Localization (TopCat.Presheaf.SubmonoidPresheaf.obj G U)))
def
TopCat.Presheaf.SubmonoidPresheaf.toLocalizationPresheaf
{X : TopCat}
{F : TopCat.Presheaf CommRingCat X}
(G : TopCat.Presheaf.SubmonoidPresheaf F)
:
The map into the localization presheaf.
Instances For
@[simp]
theorem
TopCat.Presheaf.submonoidPresheafOfStalk_obj
{X : TopCat}
(F : TopCat.Presheaf CommRingCat X)
(S : (x : ↑X) → Submonoid ↑(TopCat.Presheaf.stalk F x))
(U : (TopologicalSpace.Opens ↑X)ᵒᵖ)
:
TopCat.Presheaf.SubmonoidPresheaf.obj (TopCat.Presheaf.submonoidPresheafOfStalk F S) U = ⨅ (x : { x // x ∈ U.unop }), Submonoid.comap (TopCat.Presheaf.germ F x) (S ↑x)
noncomputable def
TopCat.Presheaf.submonoidPresheafOfStalk
{X : TopCat}
(F : TopCat.Presheaf CommRingCat X)
(S : (x : ↑X) → Submonoid ↑(TopCat.Presheaf.stalk F x))
:
Given a submonoid at each of the stalks, we may define a submonoid presheaf consisting of sections whose restriction onto each stalk falls in the given submonoid.
Instances For
noncomputable instance
TopCat.Presheaf.instInhabitedSubmonoidPresheafCommRingCatInstCommRingCatLargeCategoryInstConcreteCategoryCommRingCatInstCommRingCatLargeCategoryToMulOneClassObjToQuiverToCategoryStructTypeTypesToPrefunctorForgetToMulZeroOneClassToNonAssocSemiringToSemiringToCommSemiringInstCommRing'ToMonoidHomClassHomαCommRingInstCommRingαInstRingHomClass
{X : TopCat}
(F : TopCat.Presheaf CommRingCat X)
:
noncomputable def
TopCat.Presheaf.totalQuotientPresheaf
{X : TopCat}
(F : TopCat.Presheaf CommRingCat X)
:
The localization of a presheaf of CommRing
s at locally non-zero-divisor sections.
Instances For
noncomputable def
TopCat.Presheaf.toTotalQuotientPresheaf
{X : TopCat}
(F : TopCat.Presheaf CommRingCat X)
:
The map into the presheaf of total quotient rings