Documentation

ConNF.FOA.BaseApprox

Base approximations #

In this file, we define base approximations.

Main declarations #

Instances For
    @[simp]
    theorem ConNF.BaseApprox.mk_litters [Params] (exceptions : Rel Atom Atom) (litters : Rel Litter Litter) (exceptions_permutative : exceptions.Permutative) (litters_permutative' : litters.Permutative) (exceptions_small : ∀ (L : Litter), Small (L exceptions.dom)) :
    { exceptions := exceptions, litters := litters, exceptions_permutative := exceptions_permutative, litters_permutative' := litters_permutative', exceptions_small := exceptions_small } = litters
    theorem ConNF.BaseApprox.ext [Params] {ψ χ : BaseApprox} (h₁ : ψ.exceptions = χ.exceptions) (h₂ : ψ = χ) :
    ψ = χ
    Equations
    • One or more equations did not get rendered due to their size.
    Equations
    Instances For
      theorem ConNF.BaseApprox.nearLitterEquiv_injective [Params] {N : NearLitter} {i₁ i₂ : κ} (h : ((nearLitterEquiv N) i₁) = ((nearLitterEquiv N) i₂)) :
      i₁ = i₂
      theorem ConNF.BaseApprox.nearLitterEquiv_congr [Params] {N₁ N₂ : NearLitter} {i₁ i₂ : κ} (hN : N₁ = N₂) (hi : i₁ = i₂) :
      ((nearLitterEquiv N₁) i₁) = ((nearLitterEquiv N₂) i₂)
      @[simp]
      Instances For
        theorem ConNF.BaseApprox.typical_iff [Params] {ψ : BaseApprox} {a₁ a₂ : Atom} :
        ψ.typical a₁ a₂ ψ a₁ a₂ ∃ (i : κ), a₁ = ((nearLitterEquiv (ψ.sublitter a₁)) i) a₂ = ((nearLitterEquiv (ψ.sublitter a₂)) i)
        theorem ConNF.BaseApprox.not_mem_dom_of_typical [Params] {ψ : BaseApprox} {a₁ a₂ : Atom} (h : ψ.typical a₁ a₂) :
        a₁ψ.exceptions.dom
        theorem ConNF.BaseApprox.typical_inv_of_typical [Params] {ψ : BaseApprox} {a₁ a₂ : Atom} (h : ψ.typical a₁ a₂) :
        ψ⁻¹.typical a₂ a₁
        theorem ConNF.BaseApprox.typical_inv_iff_typical [Params] {ψ : BaseApprox} {a₁ a₂ : Atom} :
        ψ⁻¹.typical a₂ a₁ ψ.typical a₁ a₂
        Equations
        Instances For
          theorem ConNF.BaseApprox.typical_image_sublitter [Params] (ψ : BaseApprox) {L₁ L₂ : Litter} (h : ψ L₁ L₂) :
          ψ.typical.image (ψ.sublitter L₁) = (ψ.sublitter L₂)
          theorem ConNF.BaseApprox.image_near_of_near [Params] (ψ : BaseApprox) (s : Set Atom) {L₁ L₂ : Litter} (hL : ψ L₁ L₂) (hsL : s ~ L₁) :
          ψ.image s ~ L₂
          Equations
          Instances For
            theorem ConNF.BaseApprox.nearLitters_def [Params] (ψ : BaseApprox) {N₁ N₂ : NearLitter} :
            ψ N₁ N₂ ψ N₁ N₂ N₁ ψ.dom ψ.image N₁ = N₂
            theorem ConNF.BaseApprox.mem_dom_nearLitters [Params] {ψ : BaseApprox} {N : NearLitter} (hL : N ψ.dom) (ha : aN \ N, a ψ.dom) :
            N ψ.dom
            Equations
            • One or more equations did not get rendered due to their size.

            This creates new definitions of ·ᴬ and ·ᴺ, but the instances are definitionally equal so no triangles are formed.

            Equations
            Equations
            Instances For
              theorem ConNF.BaseApprox.addOrbitLitters_oneOne [Params] (f : Litter) (hf : ∀ (m n k : ), f m = f nf (m + k) = f (n + k)) :
              theorem ConNF.BaseApprox.addOrbitLitters_permutative [Params] (f : Litter) (hf : ∀ (m n k : ), f m = f nf (m + k) = f (n + k)) :
              def ConNF.BaseApprox.addOrbit [Params] (ψ : BaseApprox) (f : Litter) (hf : ∀ (m n k : ), f m = f nf (m + k) = f (n + k)) (hfψ : ∀ (n : ), f nψ.dom) :
              Equations
              Instances For
                theorem ConNF.BaseApprox.addOrbit_litters [Params] {ψ : BaseApprox} {f : Litter} {hf : ∀ (m n k : ), f m = f nf (m + k) = f (n + k)} {hfψ : ∀ (n : ), f nψ.dom} :
                (ψ.addOrbit f hf hfψ) = ψaddOrbitLitters f
                theorem ConNF.BaseApprox.le_addOrbit [Params] {ψ : BaseApprox} {f : Litter} {hf : ∀ (m n k : ), f m = f nf (m + k) = f (n + k)} {hfψ : ∀ (n : ), f nψ.dom} :
                ψ ψ.addOrbit f hf hfψ
                theorem ConNF.BaseApprox.upperBound_exceptions_small [Params] (c : Set BaseApprox) (hc : IsChain (fun (x1 x2 : BaseApprox) => x1 x2) c) (L : Litter) :
                Small (L (⨆ ψc, ψ.exceptions).dom)
                def ConNF.BaseApprox.upperBound [Params] (c : Set BaseApprox) (hc : IsChain (fun (x1 x2 : BaseApprox) => x1 x2) c) :

                An upper bound for a chain of base approximations.

                Equations
                Instances For
                  theorem ConNF.BaseApprox.le_upperBound [Params] (c : Set BaseApprox) (hc : IsChain (fun (x1 x2 : BaseApprox) => x1 x2) c) (ψ : BaseApprox) :
                  ψ cψ upperBound c hc
                  Equations
                  Instances For
                    theorem ConNF.BaseApprox.basePerm_apply_near_apply [Params] (ψ : BaseApprox) (h : ψ.Total) (s : Set Atom) (L : Litter) :
                    s ~ L(ψ.toEquiv ) '' s ~ ((ψ.toEquiv ) L)
                    Equations
                    Instances For
                      @[simp]
                      theorem ConNF.BaseApprox.basePerm_smul_atom_eq_iff [Params] {ψ : BaseApprox} {h : ψ.Total} {a₁ a₂ : Atom} :
                      ψ.basePerm h a₁ = a₂ ψ a₁ a₂
                      @[simp]
                      theorem ConNF.BaseApprox.basePerm_inv_smul_atom_eq_iff [Params] {ψ : BaseApprox} {h : ψ.Total} {a₁ a₂ : Atom} :
                      (ψ.basePerm h)⁻¹ a₁ = a₂ ψ a₂ a₁
                      @[simp]
                      theorem ConNF.BaseApprox.basePerm_smul_litter_eq_iff [Params] {ψ : BaseApprox} {h : ψ.Total} {L₁ L₂ : Litter} :
                      ψ.basePerm h L₁ = L₂ ψ L₁ L₂
                      @[simp]
                      theorem ConNF.BaseApprox.basePerm_inv_smul_litter_eq_iff [Params] {ψ : BaseApprox} {h : ψ.Total} {L₁ L₂ : Litter} :
                      (ψ.basePerm h)⁻¹ L₁ = L₂ ψ L₂ L₁
                      @[simp]
                      theorem ConNF.BaseApprox.basePerm_smul_nearLitter_eq_iff [Params] {ψ : BaseApprox} {h : ψ.Total} {N₁ N₂ : NearLitter} :
                      ψ.basePerm h N₁ = N₂ ψ N₁ N₂
                      • atoms (a₁ a₂ : Atom) : ψ a₁ a₂a₂ = π a₁
                      • nearLitters (N₁ N₂ : NearLitter) : ψ N₁ N₂N₂ = π N₁
                      Instances For
                        theorem ConNF.BaseApprox.Approximates.litters [Params] {ψ : BaseApprox} {π : BasePerm} (h : ψ.Approximates π) (L₁ L₂ : Litter) :
                        ψ L₁ L₂π L₁ = L₂
                        theorem ConNF.BaseApprox.Approximates.mono [Params] {ψ χ : BaseApprox} {π : BasePerm} ( : χ.Approximates π) (h : ψ χ) :
                        Instances For