IMO 2024 Q1 #
Determine all real numbers $\alpha$ such that, for every positive integer $n$, the integer [ \lfloor \alpha \rfloor + \lfloor 2\alpha \rfloor + \cdots + \lfloor n\alpha \rfloor ] is a multiple of~$n$.
We follow Solution 3 from the official solutions. First reducing modulo 2, any answer that is not a multiple of 2 is inductively shown to be contained in a decreasing sequence of intervals, with empty intersection.
The condition of the problem.
Equations
- Imo2024Q1.Condition α = ∀ (n : ℕ), 0 < n → ↑n ∣ ∑ i ∈ Finset.Icc 1 n, ⌊↑i * α⌋
Instances For
This is to be determined by the solver of the original problem.
Instances For
theorem
Imo2024Q1.condition_sub_two_mul_int_iff
{α : ℝ}
(m : ℤ)
:
Imo2024Q1.Condition (α - 2 * ↑m) ↔ Imo2024Q1.Condition α
theorem
Imo2024Q1.condition_toIcoMod_iff
{α : ℝ}
:
Imo2024Q1.Condition (toIcoMod ⋯ 0 α) ↔ Imo2024Q1.Condition α
theorem
Imo2024Q1.Condition.mem_Ico_one_of_mem_Ioo
{α : ℝ}
(hc : Imo2024Q1.Condition α)
(h : α ∈ Set.Ioo 0 2)
:
theorem
Imo2024Q1.condition_iff_of_mem_Ico
{α : ℝ}
(h : α ∈ Set.Ico 0 2)
:
Imo2024Q1.Condition α ↔ α = 0