Documentation

Mathlib.Algebra.Category.CoalgebraCat.ComonEquivalence

The category equivalence between R-coalgebras and comonoid objects in R-Mod #

Given a commutative ring R, this file defines the equivalence of categories between R-coalgebras and comonoid objects in the category of R-modules.

We then use this to set up boilerplate for the Coalgebra instance on a tensor product of coalgebras defined in Mathlib.RingTheory.Coalgebra.TensorProduct.

Implementation notes #

We make the definition CoalgebraCat.instMonoidalCategoryAux in this file, which is the monoidal structure on CoalgebraCat induced by the equivalence with Comon(R-Mod). We use this to show the comultiplication and counit on a tensor product of coalgebras satisfy the coalgebra axioms, but our actual MonoidalCategory instance on CoalgebraCat is constructed in Mathlib.Algebra.Category.CoalgebraCat.Monoidal to have better definitional equalities.

An R-coalgebra is a comonoid object in the category of R-modules.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    The natural functor from R-coalgebras to comonoid objects in the category of R-modules.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      @[simp]
      theorem CoalgebraCat.toComon_map_hom (R : Type u) [CommRing R] {X✝ Y✝ : CoalgebraCat R} (f : X✝ Y✝) :

      A comonoid object in the category of R-modules has a natural comultiplication and counit.

      Equations

      A comonoid object in the category of R-modules has a natural R-coalgebra structure.

      Equations
      Instances For

        The natural functor from comonoid objects in the category of R-modules to R-coalgebras.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          The natural category equivalence between R-coalgebras and comonoid objects in the category of R-modules.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            The monoidal category structure on the category of R-coalgebras induced by the equivalence with Comon(R-Mod). This is just an auxiliary definition; the MonoidalCategory instance we make in Mathlib.Algebra.Category.CoalgebraCat.Monoidal has better definitional equalities.

            Equations
            Instances For