Internal grading of an AddMonoidAlgebra
#
In this file, we show that an AddMonoidAlgebra
has an internal direct sum structure.
Main results #
AddMonoidAlgebra.gradeBy R f i
: thei
th grade of anR[M]
given by the degree functionf
.AddMonoidAlgebra.grade R i
: thei
th grade of anR[M]
when the degree function is the identity.AddMonoidAlgebra.gradeBy.gradedAlgebra
:AddMonoidAlgebra
is an algebra graded byAddMonoidAlgebra.gradeBy
.AddMonoidAlgebra.grade.gradedAlgebra
:AddMonoidAlgebra
is an algebra graded byAddMonoidAlgebra.grade
.AddMonoidAlgebra.gradeBy.isInternal
: propositionally, the statement thatAddMonoidAlgebra.gradeBy
defines an internal graded structure.AddMonoidAlgebra.grade.isInternal
: propositionally, the statement thatAddMonoidAlgebra.grade
defines an internal graded structure when the degree function is the identity.
@[reducible, inline]
abbrev
AddMonoidAlgebra.gradeBy
{M : Type u_1}
{ι : Type u_2}
(R : Type u_3)
[CommSemiring R]
(f : M → ι)
(i : ι)
:
Submodule R (AddMonoidAlgebra R M)
The submodule corresponding to each grade given by the degree function f
.
Equations
- AddMonoidAlgebra.gradeBy R f i = { carrier := {a : AddMonoidAlgebra R M | ∀ m ∈ a.support, f m = i}, add_mem' := ⋯, zero_mem' := ⋯, smul_mem' := ⋯ }
Instances For
@[reducible, inline]
abbrev
AddMonoidAlgebra.grade
{M : Type u_1}
(R : Type u_3)
[CommSemiring R]
(m : M)
:
Submodule R (AddMonoidAlgebra R M)
The submodule corresponding to each grade.
Equations
- AddMonoidAlgebra.grade R m = AddMonoidAlgebra.gradeBy R id m
Instances For
theorem
AddMonoidAlgebra.mem_gradeBy_iff
{M : Type u_1}
{ι : Type u_2}
(R : Type u_3)
[CommSemiring R]
(f : M → ι)
(i : ι)
(a : AddMonoidAlgebra R M)
:
a ∈ AddMonoidAlgebra.gradeBy R f i ↔ ↑a.support ⊆ f ⁻¹' {i}
theorem
AddMonoidAlgebra.mem_grade_iff
{M : Type u_1}
(R : Type u_3)
[CommSemiring R]
(m : M)
(a : AddMonoidAlgebra R M)
:
a ∈ AddMonoidAlgebra.grade R m ↔ a.support ⊆ {m}
theorem
AddMonoidAlgebra.mem_grade_iff'
{M : Type u_1}
(R : Type u_3)
[CommSemiring R]
(m : M)
(a : AddMonoidAlgebra R M)
:
a ∈ AddMonoidAlgebra.grade R m ↔ a ∈ LinearMap.range (Finsupp.lsingle m)
theorem
AddMonoidAlgebra.grade_eq_lsingle_range
{M : Type u_1}
(R : Type u_3)
[CommSemiring R]
(m : M)
:
theorem
AddMonoidAlgebra.single_mem_gradeBy
{M : Type u_1}
{ι : Type u_2}
{R : Type u_4}
[CommSemiring R]
(f : M → ι)
(m : M)
(r : R)
:
Finsupp.single m r ∈ AddMonoidAlgebra.gradeBy R f (f m)
theorem
AddMonoidAlgebra.single_mem_grade
{M : Type u_1}
{R : Type u_4}
[CommSemiring R]
(i : M)
(r : R)
:
Finsupp.single i r ∈ AddMonoidAlgebra.grade R i
instance
AddMonoidAlgebra.gradeBy.gradedMonoid
{M : Type u_1}
{ι : Type u_2}
{R : Type u_3}
[AddMonoid M]
[AddMonoid ι]
[CommSemiring R]
(f : M →+ ι)
:
instance
AddMonoidAlgebra.grade.gradedMonoid
{M : Type u_1}
{R : Type u_3}
[AddMonoid M]
[CommSemiring R]
:
def
AddMonoidAlgebra.decomposeAux
{M : Type u_1}
{ι : Type u_2}
{R : Type u_3}
[AddMonoid M]
[DecidableEq ι]
[AddMonoid ι]
[CommSemiring R]
(f : M →+ ι)
:
AddMonoidAlgebra R M →ₐ[R] DirectSum ι fun (i : ι) => ↥(AddMonoidAlgebra.gradeBy R (⇑f) i)
Auxiliary definition; the canonical grade decomposition, used to provide
DirectSum.decompose
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
AddMonoidAlgebra.decomposeAux_single
{M : Type u_1}
{ι : Type u_2}
{R : Type u_3}
[AddMonoid M]
[DecidableEq ι]
[AddMonoid ι]
[CommSemiring R]
(f : M →+ ι)
(m : M)
(r : R)
:
(AddMonoidAlgebra.decomposeAux f) (Finsupp.single m r) = (DirectSum.of (fun (i : ι) => ↥(AddMonoidAlgebra.gradeBy R (⇑f) i)) (f m)) ⟨Finsupp.single m r, ⋯⟩
theorem
AddMonoidAlgebra.decomposeAux_coe
{M : Type u_1}
{ι : Type u_2}
{R : Type u_3}
[AddMonoid M]
[DecidableEq ι]
[AddMonoid ι]
[CommSemiring R]
(f : M →+ ι)
{i : ι}
(x : ↥(AddMonoidAlgebra.gradeBy R (⇑f) i))
:
(AddMonoidAlgebra.decomposeAux f) ↑x = (DirectSum.of (fun (i : ι) => ↥(AddMonoidAlgebra.gradeBy R (⇑f) i)) i) x
instance
AddMonoidAlgebra.gradeBy.gradedAlgebra
{M : Type u_1}
{ι : Type u_2}
{R : Type u_3}
[AddMonoid M]
[DecidableEq ι]
[AddMonoid ι]
[CommSemiring R]
(f : M →+ ι)
:
Equations
instance
AddMonoidAlgebra.gradeBy.decomposition
{M : Type u_1}
{ι : Type u_2}
{R : Type u_3}
[AddMonoid M]
[DecidableEq ι]
[AddMonoid ι]
[CommSemiring R]
(f : M →+ ι)
:
Equations
- AddMonoidAlgebra.gradeBy.decomposition f = inferInstance
@[simp]
theorem
AddMonoidAlgebra.decomposeAux_eq_decompose
{M : Type u_1}
{ι : Type u_2}
{R : Type u_3}
[AddMonoid M]
[DecidableEq ι]
[AddMonoid ι]
[CommSemiring R]
(f : M →+ ι)
:
theorem
AddMonoidAlgebra.GradesBy.decompose_single
{M : Type u_1}
{ι : Type u_2}
{R : Type u_3}
[AddMonoid M]
[DecidableEq ι]
[AddMonoid ι]
[CommSemiring R]
(f : M →+ ι)
(m : M)
(r : R)
:
(DirectSum.decompose (AddMonoidAlgebra.gradeBy R ⇑f)) (Finsupp.single m r) = (DirectSum.of (fun (i : ι) => ↥(AddMonoidAlgebra.gradeBy R (⇑f) i)) (f m)) ⟨Finsupp.single m r, ⋯⟩
instance
AddMonoidAlgebra.grade.gradedAlgebra
{ι : Type u_2}
{R : Type u_3}
[DecidableEq ι]
[AddMonoid ι]
[CommSemiring R]
:
Equations
- AddMonoidAlgebra.grade.gradedAlgebra = AddMonoidAlgebra.gradeBy.gradedAlgebra (AddMonoidHom.id ι)
instance
AddMonoidAlgebra.grade.decomposition
{ι : Type u_2}
{R : Type u_3}
[DecidableEq ι]
[AddMonoid ι]
[CommSemiring R]
:
Equations
- AddMonoidAlgebra.grade.decomposition = inferInstance
theorem
AddMonoidAlgebra.grade.decompose_single
{ι : Type u_2}
{R : Type u_3}
[DecidableEq ι]
[AddMonoid ι]
[CommSemiring R]
(i : ι)
(r : R)
:
(DirectSum.decompose (AddMonoidAlgebra.grade R)) (Finsupp.single i r) = (DirectSum.of (fun (i : ι) => ↥(AddMonoidAlgebra.grade R i)) i) ⟨Finsupp.single i r, ⋯⟩
theorem
AddMonoidAlgebra.gradeBy.isInternal
{M : Type u_1}
{ι : Type u_2}
{R : Type u_3}
[AddMonoid M]
[DecidableEq ι]
[AddMonoid ι]
[CommSemiring R]
(f : M →+ ι)
:
AddMonoidAlgebra.gradeBy
describe an internally graded algebra.
theorem
AddMonoidAlgebra.grade.isInternal
{ι : Type u_2}
{R : Type u_3}
[DecidableEq ι]
[AddMonoid ι]
[CommSemiring R]
:
AddMonoidAlgebra.grade
describe an internally graded algebra.