Documentation

Mathlib.Algebra.Order.UpperLower

Algebraic operations on upper/lower sets #

Upper/lower sets are preserved under pointwise algebraic operations in ordered groups.

theorem IsUpperSet.vadd_subset {α : Type u_1} [OrderedAddCommMonoid α] {s : Set α} {x : α} (hs : IsUpperSet s) (hx : 0 x) :
x +ᵥ s s
theorem IsUpperSet.smul_subset {α : Type u_1} [OrderedCommMonoid α] {s : Set α} {x : α} (hs : IsUpperSet s) (hx : 1 x) :
x s s
theorem IsLowerSet.vadd_subset {α : Type u_1} [OrderedAddCommMonoid α] {s : Set α} {x : α} (hs : IsLowerSet s) (hx : x 0) :
x +ᵥ s s
theorem IsLowerSet.smul_subset {α : Type u_1} [OrderedCommMonoid α] {s : Set α} {x : α} (hs : IsLowerSet s) (hx : x 1) :
x s s
theorem IsUpperSet.vadd {α : Type u_1} [OrderedAddCommGroup α] {s : Set α} {a : α} (hs : IsUpperSet s) :
theorem IsUpperSet.smul {α : Type u_1} [OrderedCommGroup α] {s : Set α} {a : α} (hs : IsUpperSet s) :
theorem IsLowerSet.vadd {α : Type u_1} [OrderedAddCommGroup α] {s : Set α} {a : α} (hs : IsLowerSet s) :
theorem IsLowerSet.smul {α : Type u_1} [OrderedCommGroup α] {s : Set α} {a : α} (hs : IsLowerSet s) :
theorem Set.OrdConnected.vadd {α : Type u_1} [OrderedAddCommGroup α] {s : Set α} {a : α} (hs : Set.OrdConnected s) :
theorem Set.OrdConnected.smul {α : Type u_1} [OrderedCommGroup α] {s : Set α} {a : α} (hs : Set.OrdConnected s) :
theorem IsUpperSet.add_left {α : Type u_1} [OrderedAddCommGroup α] {s : Set α} {t : Set α} (ht : IsUpperSet t) :
theorem IsUpperSet.mul_left {α : Type u_1} [OrderedCommGroup α] {s : Set α} {t : Set α} (ht : IsUpperSet t) :
theorem IsUpperSet.add_right {α : Type u_1} [OrderedAddCommGroup α] {s : Set α} {t : Set α} (hs : IsUpperSet s) :
theorem IsUpperSet.mul_right {α : Type u_1} [OrderedCommGroup α] {s : Set α} {t : Set α} (hs : IsUpperSet s) :
theorem IsLowerSet.add_left {α : Type u_1} [OrderedAddCommGroup α] {s : Set α} {t : Set α} (ht : IsLowerSet t) :
theorem IsLowerSet.mul_left {α : Type u_1} [OrderedCommGroup α] {s : Set α} {t : Set α} (ht : IsLowerSet t) :
theorem IsLowerSet.add_right {α : Type u_1} [OrderedAddCommGroup α] {s : Set α} {t : Set α} (hs : IsLowerSet s) :
theorem IsLowerSet.mul_right {α : Type u_1} [OrderedCommGroup α] {s : Set α} {t : Set α} (hs : IsLowerSet s) :
theorem IsUpperSet.neg {α : Type u_1} [OrderedAddCommGroup α] {s : Set α} (hs : IsUpperSet s) :
theorem IsUpperSet.inv {α : Type u_1} [OrderedCommGroup α] {s : Set α} (hs : IsUpperSet s) :
theorem IsLowerSet.neg {α : Type u_1} [OrderedAddCommGroup α] {s : Set α} (hs : IsLowerSet s) :
theorem IsLowerSet.inv {α : Type u_1} [OrderedCommGroup α] {s : Set α} (hs : IsLowerSet s) :
theorem IsUpperSet.sub_left {α : Type u_1} [OrderedAddCommGroup α] {s : Set α} {t : Set α} (ht : IsUpperSet t) :
theorem IsUpperSet.div_left {α : Type u_1} [OrderedCommGroup α] {s : Set α} {t : Set α} (ht : IsUpperSet t) :
theorem IsUpperSet.sub_right {α : Type u_1} [OrderedAddCommGroup α] {s : Set α} {t : Set α} (hs : IsUpperSet s) :
theorem IsUpperSet.div_right {α : Type u_1} [OrderedCommGroup α] {s : Set α} {t : Set α} (hs : IsUpperSet s) :
theorem IsLowerSet.sub_left {α : Type u_1} [OrderedAddCommGroup α] {s : Set α} {t : Set α} (ht : IsLowerSet t) :
theorem IsLowerSet.div_left {α : Type u_1} [OrderedCommGroup α] {s : Set α} {t : Set α} (ht : IsLowerSet t) :
theorem IsLowerSet.sub_right {α : Type u_1} [OrderedAddCommGroup α] {s : Set α} {t : Set α} (hs : IsLowerSet s) :
theorem IsLowerSet.div_right {α : Type u_1} [OrderedCommGroup α] {s : Set α} {t : Set α} (hs : IsLowerSet s) :
@[simp]
theorem UpperSet.coe_zero {α : Type u_1} [OrderedAddCommGroup α] :
0 = Set.Ici 0
@[simp]
theorem UpperSet.coe_one {α : Type u_1} [OrderedCommGroup α] :
1 = Set.Ici 1
@[simp]
theorem UpperSet.coe_add {α : Type u_1} [OrderedAddCommGroup α] (s : UpperSet α) (t : UpperSet α) :
↑(s + t) = s + t
@[simp]
theorem UpperSet.coe_mul {α : Type u_1} [OrderedCommGroup α] (s : UpperSet α) (t : UpperSet α) :
↑(s * t) = s * t
@[simp]
theorem UpperSet.coe_sub {α : Type u_1} [OrderedAddCommGroup α] (s : UpperSet α) (t : UpperSet α) :
↑(s - t) = s - t
@[simp]
theorem UpperSet.coe_div {α : Type u_1} [OrderedCommGroup α] (s : UpperSet α) (t : UpperSet α) :
↑(s / t) = s / t
@[simp]
@[simp]
theorem UpperSet.Ici_one {α : Type u_1} [OrderedCommGroup α] :
theorem UpperSet.addCommSemigroup.proof_2 {α : Type u_1} [OrderedAddCommGroup α] (a : UpperSet α) (b : UpperSet α) :
a + b = b + a
theorem UpperSet.instAddCommMonoidUpperSetToLEToPreorderToPartialOrder.proof_3 {α : Type u_1} [OrderedAddCommGroup α] :
∀ (n : ) (x : UpperSet α), nsmulRec (n + 1) x = nsmulRec (n + 1) x
@[simp]
theorem LowerSet.coe_add {α : Type u_1} [OrderedAddCommGroup α] (s : LowerSet α) (t : LowerSet α) :
↑(s + t) = s + t
@[simp]
theorem LowerSet.coe_mul {α : Type u_1} [OrderedCommGroup α] (s : LowerSet α) (t : LowerSet α) :
↑(s * t) = s * t
@[simp]
theorem LowerSet.coe_sub {α : Type u_1} [OrderedAddCommGroup α] (s : LowerSet α) (t : LowerSet α) :
↑(s - t) = s - t
@[simp]
theorem LowerSet.coe_div {α : Type u_1} [OrderedCommGroup α] (s : LowerSet α) (t : LowerSet α) :
↑(s / t) = s / t
@[simp]
@[simp]
theorem LowerSet.Iic_one {α : Type u_1} [OrderedCommGroup α] :
theorem LowerSet.addCommSemigroup.proof_2 {α : Type u_1} [OrderedAddCommGroup α] (a : LowerSet α) (b : LowerSet α) :
a + b = b + a
theorem LowerSet.instAddCommMonoidLowerSetToLEToPreorderToPartialOrder.proof_3 {α : Type u_1} [OrderedAddCommGroup α] :
∀ (n : ) (x : LowerSet α), nsmulRec (n + 1) x = nsmulRec (n + 1) x
@[simp]
@[simp]
theorem upperClosure_one {α : Type u_1} [OrderedCommGroup α] :
@[simp]
@[simp]
theorem lowerClosure_one {α : Type u_1} [OrderedCommGroup α] :
@[simp]
theorem upperClosure_vadd {α : Type u_1} [OrderedAddCommGroup α] (s : Set α) (a : α) :
@[simp]
theorem upperClosure_smul {α : Type u_1} [OrderedCommGroup α] (s : Set α) (a : α) :
@[simp]
theorem lowerClosure_vadd {α : Type u_1} [OrderedAddCommGroup α] (s : Set α) (a : α) :
@[simp]
theorem lowerClosure_smul {α : Type u_1} [OrderedCommGroup α] (s : Set α) (a : α) :
theorem add_upperClosure {α : Type u_1} [OrderedAddCommGroup α] (s : Set α) (t : Set α) :
s + ↑(upperClosure t) = ↑(upperClosure (s + t))
theorem mul_upperClosure {α : Type u_1} [OrderedCommGroup α] (s : Set α) (t : Set α) :
s * ↑(upperClosure t) = ↑(upperClosure (s * t))
theorem add_lowerClosure {α : Type u_1} [OrderedAddCommGroup α] (s : Set α) (t : Set α) :
s + ↑(lowerClosure t) = ↑(lowerClosure (s + t))
theorem mul_lowerClosure {α : Type u_1} [OrderedCommGroup α] (s : Set α) (t : Set α) :
s * ↑(lowerClosure t) = ↑(lowerClosure (s * t))
theorem upperClosure_add {α : Type u_1} [OrderedAddCommGroup α] (s : Set α) (t : Set α) :
↑(upperClosure s) + t = ↑(upperClosure (s + t))
theorem upperClosure_mul {α : Type u_1} [OrderedCommGroup α] (s : Set α) (t : Set α) :
↑(upperClosure s) * t = ↑(upperClosure (s * t))
theorem lowerClosure_add {α : Type u_1} [OrderedAddCommGroup α] (s : Set α) (t : Set α) :
↑(lowerClosure s) + t = ↑(lowerClosure (s + t))
theorem lowerClosure_mul {α : Type u_1} [OrderedCommGroup α] (s : Set α) (t : Set α) :
↑(lowerClosure s) * t = ↑(lowerClosure (s * t))
@[simp]
theorem upperClosure_add_distrib {α : Type u_1} [OrderedAddCommGroup α] (s : Set α) (t : Set α) :
@[simp]
theorem upperClosure_mul_distrib {α : Type u_1} [OrderedCommGroup α] (s : Set α) (t : Set α) :
@[simp]
theorem lowerClosure_add_distrib {α : Type u_1} [OrderedAddCommGroup α] (s : Set α) (t : Set α) :
@[simp]
theorem lowerClosure_mul_distrib {α : Type u_1} [OrderedCommGroup α] (s : Set α) (t : Set α) :