Documentation

Mathlib.AlgebraicGeometry.EllipticCurve.Reduction

Reduction of Weierstrass curves over local fields #

This file defines reduction of Weierstrass curves over local fields, or more generally, fraction fields of discrete valuation rings.

Main definitions #

Main statements #

References #

Tags #

elliptic curve, weierstrass equation, minimal weierstrass equation, reduction

class WeierstrassCurve.IsIntegral (R : Type u_1) [CommRing R] {K : Type u_2} [Field K] [Algebra R K] (W : WeierstrassCurve K) :

A Weierstrass equation over the fraction field K is integral if it has coefficients in the ring R.

Instances
    theorem WeierstrassCurve.isIntegral_iff (R : Type u_1) [CommRing R] {K : Type u_2} [Field K] [Algebra R K] (W : WeierstrassCurve K) :
    IsIntegral R W ∃ (W_int : WeierstrassCurve R), W = W_int.baseChange K
    noncomputable def WeierstrassCurve.integralModel (R : Type u_1) [CommRing R] {K : Type u_2} [Field K] [Algebra R K] (W : WeierstrassCurve K) [hW : IsIntegral R W] :

    An integral model of an integral Weierstrass curve.

    Equations
    Instances For
      theorem WeierstrassCurve.isIntegral_of_exists_lift (R : Type u_1) [CommRing R] {K : Type u_2} [Field K] [Algebra R K] {W : WeierstrassCurve K} (h₁ : ∃ (r₁ : R), (algebraMap R K) r₁ = W.a₁) (h₂ : ∃ (r₂ : R), (algebraMap R K) r₂ = W.a₂) (h₃ : ∃ (r₃ : R), (algebraMap R K) r₃ = W.a₃) (h₄ : ∃ (r₄ : R), (algebraMap R K) r₄ = W.a₄) (h₆ : ∃ (r₆ : R), (algebraMap R K) r₆ = W.a₆) :
      theorem WeierstrassCurve.Δ_integral_of_isIntegral (R : Type u_1) [CommRing R] {K : Type u_2} [Field K] [Algebra R K] (W : WeierstrassCurve K) [IsIntegral R W] :
      ∃ (r : R), (algebraMap R K) r = W.Δ
      theorem WeierstrassCurve.integralModel_Δ_eq (R : Type u_1) [CommRing R] {K : Type u_2} [Field K] [Algebra R K] (W : WeierstrassCurve K) [hW : IsIntegral R W] :
      theorem WeierstrassCurve.exists_isIntegral (R : Type u_1) [CommRing R] {K : Type u_2} [Field K] [Algebra R K] [IsDomain R] [ValuationRing R] [IsFractionRing R K] (W : WeierstrassCurve K) :
      ∃ (C : VariableChange K), IsIntegral R (C W)

      The valuation of the discriminant of a Weierstrass curve W, which is at most 1 if W is integral. Zero otherwise.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        A Weierstrass equation over the fraction field K is minimal if the (multiplicative) valuation of its discriminant is maximal among all isomorphic integral Weierstrass equations. We still use 'minimal' for the naming, so as to standardize the naming with Silverman's book.

        Instances
          theorem WeierstrassCurve.isMinimal_iff (R : Type u_1) [CommRing R] [IsDomain R] [IsDiscreteValuationRing R] {K : Type u_2} [Field K] [Algebra R K] [IsFractionRing R K] (W : WeierstrassCurve K) :
          IsMinimal R W MaximalFor (fun (C : VariableChange K) => IsIntegral R (C W)) (fun (C : VariableChange K) => valuation_Δ_aux R (C W)) 1
          noncomputable def WeierstrassCurve.minimal (R : Type u_1) [CommRing R] [IsDomain R] [IsDiscreteValuationRing R] {K : Type u_2} [Field K] [Algebra R K] [IsFractionRing R K] (W : WeierstrassCurve K) :

          A minimal Weierstrass equation for a given Weierstrass curve over K.

          Equations
          Instances For

            The reduction of a Weierstrass curve over K given by a minimal Weierstrass equation, which is a Weierstrass curve over the residue field of R.

            Equations
            Instances For

              A minimal Weierstrass equation has good reduction if and only if the valuation of its discriminant is 1.

              Instances