Geometrically Irreducible Schemes #
Main results #
AlgebraicGeometry.GeometricallyIrreducible: We say that morphismf : X ⟶ Yis geometrically irreducible if for allSpec K ⟶ YwithKa field,X ×[Y] Spec Kis irrreducible. We also provide the fact that this is stable under base change (by infer_instance)GeometricallyIrreducible.iff_geometricallyIrreducible_fiber: A scheme is geometrically irreducible overSiff the fibers of alls : Sare geometrically irreducible.AlgebraicGeometry.GeometricallyIrreducible.irreducibleSpace: IfXis geometrically irreducible and universally open (e.g. when flat + finite presentation), over an irreducible scheme, thenXis also irreducible. In particular, the base change of a geometrically irreducible and universally open scheme to an irreducible scheme is irreducible (by infer_instance).
We say that morphism f : X ⟶ Y is geometrically irreducible if for all Spec K ⟶ Y with K
a field, X ×[Y] Spec K is irrreducible.
- geometrically_irreducibleSpace : geometrically (fun (x : Scheme) => IrreducibleSpace ↥x) f
Instances
instance
AlgebraicGeometry.instGeometricallyIrreducibleFstScheme
{X Y S : Scheme}
(f : X ⟶ S)
(g : Y ⟶ S)
[GeometricallyIrreducible g]
:
instance
AlgebraicGeometry.instGeometricallyIrreducibleSndScheme
{X Y S : Scheme}
(f : X ⟶ S)
(g : Y ⟶ S)
[GeometricallyIrreducible f]
:
instance
AlgebraicGeometry.instGeometricallyIrreducibleMorphismRestrict
{X S : Scheme}
(f : X ⟶ S)
(V : S.Opens)
[GeometricallyIrreducible f]
:
GeometricallyIrreducible (f ∣_ V)
instance
AlgebraicGeometry.instGeometricallyIrreducibleFiberToSpecResidueField
{X S : Scheme}
(f : X ⟶ S)
(s : ↥S)
[GeometricallyIrreducible f]
:
instance
AlgebraicGeometry.instIrreducibleSpaceCarrierCarrierCommRingCatFiberOfGeometricallyIrreducible
{X S : Scheme}
(f : X ⟶ S)
(s : ↥S)
[GeometricallyIrreducible f]
:
IrreducibleSpace ↥(Scheme.Hom.fiber f s)
@[instance 100]
instance
AlgebraicGeometry.instSurjectiveOfGeometricallyIrreducible
{X S : Scheme}
(f : X ⟶ S)
[GeometricallyIrreducible f]
:
theorem
AlgebraicGeometry.Scheme.Hom.isIrreducible_preimage
{X S : Scheme}
(f : X ⟶ S)
[GeometricallyIrreducible f]
(hf : IsOpenMap ⇑f)
{s : Set ↥S}
(hs : IsIrreducible s)
:
IsIrreducible (⇑f ⁻¹' s)
def
AlgebraicGeometry.Scheme.Hom.irreducibleComponentsEquiv
{X S : Scheme}
(f : X ⟶ S)
[GeometricallyIrreducible f]
(hf : IsOpenMap ⇑f)
:
If f : X ⟶ S is geometrically irreducible and open,
then f induces an equivalence between the irreducible components of X and S.
Equations
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.Hom.irreducibleComponentsEquiv_symm_apply_coe
{X S : Scheme}
(f : X ⟶ S)
[GeometricallyIrreducible f]
(hf : IsOpenMap ⇑f)
(a✝ : ↑(irreducibleComponents ↥S))
:
@[simp]
theorem
AlgebraicGeometry.Scheme.Hom.irreducibleComponentsEquiv_apply_coe
{X S : Scheme}
(f : X ⟶ S)
[GeometricallyIrreducible f]
(hf : IsOpenMap ⇑f)
(a✝ : ↑(irreducibleComponents ↥X))
:
theorem
AlgebraicGeometry.GeometricallyIrreducible.irreducibleSpace
{X S : Scheme}
(f : X ⟶ S)
[GeometricallyIrreducible f]
[IrreducibleSpace ↥S]
(hf : IsOpenMap ⇑f)
:
theorem
AlgebraicGeometry.GeometricallyIrreducible.irreducibleSpace_of_subsingleton
{X S : Scheme}
(f : X ⟶ S)
[GeometricallyIrreducible f]
[Subsingleton ↥S]
[Nonempty ↥S]
:
If X is geometrically irreducible over a point, then it is irreducible.
instance
AlgebraicGeometry.instIrreducibleSpaceCarrierCarrierCommRingCatPullbackSchemeOfGeometricallyIrreducibleOfUniversallyOpen
{X Y S : Scheme}
(f : X ⟶ S)
(g : Y ⟶ S)
[GeometricallyIrreducible f]
[UniversallyOpen f]
[IrreducibleSpace ↥Y]
:
If X is geometrically irreducible and universally open over S and Y is irreducible,
then X ×ₛ Y is irreducible.
The universally open assumption in particular holds when it is flat and locally of finite
presentation, or when S is a field.
instance
AlgebraicGeometry.instIrreducibleSpaceCarrierCarrierCommRingCatPullbackSchemeOfGeometricallyIrreducibleOfUniversallyOpen_1
{X Y S : Scheme}
(f : X ⟶ S)
(g : Y ⟶ S)
[GeometricallyIrreducible g]
[UniversallyOpen g]
[IrreducibleSpace ↥X]
:
theorem
AlgebraicGeometry.GeometricallyIrreducible.iff_geometricallyIrreducible_fiber
{X S : Scheme}
(f : X ⟶ S)
:
GeometricallyIrreducible f ↔ ∀ (s : ↥S), GeometricallyIrreducible (Scheme.Hom.fiberToSpecResidueField f s)
theorem
AlgebraicGeometry.GeometricallyIrreducible.comp
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[GeometricallyIrreducible f]
[GeometricallyIrreducible g]
[UniversallyOpen f]
[UniversallyOpen g]
: