Documentation

Mathlib.AlgebraicGeometry.Morphisms.UnderlyingMap

Properties on the underlying functions of morphisms of schemes. #

This file includes various results on properties of morphisms of schemes that come from properties of the underlying map of topological spaces, including

class AlgebraicGeometry.Surjective {X Y : Scheme} (f : X Y) :

A morphism of schemes is surjective if the underlying map is.

Instances
    @[simp]
    theorem AlgebraicGeometry.range_eq_univ {X Y : Scheme} (f : X Y) [Surjective f] :
    Set.range f.base = Set.univ
    theorem AlgebraicGeometry.range_eq_range_of_surjective {X Y S : Scheme} (f : X S) (g : Y S) (e : X Y) [Surjective e] (hge : CategoryTheory.CategoryStruct.comp e g = f) :
    Set.range f.base = Set.range g.base
    theorem AlgebraicGeometry.mem_range_iff_of_surjective {X Y S : Scheme} (f : X S) (g : Y S) (e : X Y) [Surjective e] (hge : CategoryTheory.CategoryStruct.comp e g = f) (s : S.toPresheafedSpace) :
    s Set.range f.base s Set.range g.base
    instance AlgebraicGeometry.injective_isStableUnderComposition :
    (topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] (x : αβ) => Function.Injective x).IsStableUnderComposition
    class AlgebraicGeometry.IsDominant {X Y : Scheme} (f : X Y) :

    A morphism of schemes is dominant if the underlying map has dense range.

    Instances
      theorem AlgebraicGeometry.Scheme.Hom.denseRange {X Y : Scheme} (f : X.Hom Y) [IsDominant f] :
      DenseRange f.base
      @[instance 100]