Properties on the underlying functions of morphisms of schemes. #
This file includes various results on properties of morphisms of schemes that come from properties of the underlying map of topological spaces, including
Injective
Surjective
IsOpenMap
IsClosedMap
IsEmbedding
IsOpenEmbedding
IsClosedEmbedding
DenseRange
(IsDominant
)
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyInjective :
(topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Function.Injective).RespectsIso
instance
AlgebraicGeometry.injective_isLocalAtTarget :
IsLocalAtTarget (topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Function.Injective)
A morphism of schemes is surjective if the underlying map is.
- surj : Function.Surjective ⇑f.base
Instances
theorem
AlgebraicGeometry.surjective_iff
{X Y : Scheme}
(f : X ⟶ Y)
:
Surjective f ↔ Function.Surjective ⇑f.base
theorem
AlgebraicGeometry.surjective_eq_topologically :
@Surjective = topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Function.Surjective
theorem
AlgebraicGeometry.Scheme.Hom.surjective
{X Y : Scheme}
(f : X.Hom Y)
[Surjective f]
:
Function.Surjective ⇑f.base
@[instance 100]
instance
AlgebraicGeometry.instSurjectiveOfIsIsoScheme
{X Y : Scheme}
(f : X ⟶ Y)
[CategoryTheory.IsIso f]
:
instance
AlgebraicGeometry.instSurjectiveCompScheme
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[Surjective f]
[Surjective g]
:
theorem
AlgebraicGeometry.Surjective.of_comp
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[Surjective (CategoryTheory.CategoryStruct.comp f g)]
:
theorem
AlgebraicGeometry.Surjective.comp_iff
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[Surjective f]
:
@[simp]
theorem
AlgebraicGeometry.range_eq_range_of_surjective
{X Y S : Scheme}
(f : X ⟶ S)
(g : Y ⟶ S)
(e : X ⟶ Y)
[Surjective e]
(hge : CategoryTheory.CategoryStruct.comp e g = f)
:
theorem
AlgebraicGeometry.mem_range_iff_of_surjective
{X Y S : Scheme}
(f : X ⟶ S)
(g : Y ⟶ S)
(e : X ⟶ Y)
[Surjective e]
(hge : CategoryTheory.CategoryStruct.comp e g = f)
(s : ↑↑S.toPresheafedSpace)
:
instance
AlgebraicGeometry.injective_isStableUnderComposition :
(topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] (x : α → β) =>
Function.Injective x).IsStableUnderComposition
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsOpenMap :
(topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => IsOpenMap).RespectsIso
instance
AlgebraicGeometry.isOpenMap_isLocalAtTarget :
IsLocalAtTarget (topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => IsOpenMap)
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsClosedMap :
(topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => IsClosedMap).RespectsIso
instance
AlgebraicGeometry.isClosedMap_isLocalAtTarget :
IsLocalAtTarget (topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => IsClosedMap)
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsEmbedding :
(topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Topology.IsEmbedding).RespectsIso
instance
AlgebraicGeometry.isEmbedding_isLocalAtTarget :
IsLocalAtTarget (topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Topology.IsEmbedding)
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsOpenEmbedding :
(topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Topology.IsOpenEmbedding).RespectsIso
instance
AlgebraicGeometry.isOpenEmbedding_isLocalAtTarget :
IsLocalAtTarget
(topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Topology.IsOpenEmbedding)
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsClosedEmbedding :
(topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Topology.IsClosedEmbedding).RespectsIso
instance
AlgebraicGeometry.isClosedEmbedding_isLocalAtTarget :
IsLocalAtTarget
(topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Topology.IsClosedEmbedding)
A morphism of schemes is dominant if the underlying map has dense range.
- denseRange : DenseRange ⇑f.base
Instances
theorem
AlgebraicGeometry.isDominant_iff
{X Y : Scheme}
(f : X ⟶ Y)
:
IsDominant f ↔ DenseRange ⇑f.base
theorem
AlgebraicGeometry.dominant_eq_topologically :
@IsDominant = topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => DenseRange
theorem
AlgebraicGeometry.Scheme.Hom.denseRange
{X Y : Scheme}
(f : X.Hom Y)
[IsDominant f]
:
DenseRange ⇑f.base
@[instance 100]
instance
AlgebraicGeometry.instIsDominantCompScheme
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[IsDominant f]
[IsDominant g]
:
theorem
AlgebraicGeometry.IsDominant.of_comp
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[H : IsDominant (CategoryTheory.CategoryStruct.comp f g)]
:
theorem
AlgebraicGeometry.IsDominant.comp_iff
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[IsDominant f]
:
theorem
AlgebraicGeometry.surjective_of_isDominant_of_isClosed_range
{X Y : Scheme}
(f : X ⟶ Y)
[IsDominant f]
(hf : IsClosed (Set.range ⇑f.base))
:
theorem
AlgebraicGeometry.IsDominant.of_comp_of_isOpenImmersion
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[H : IsDominant (CategoryTheory.CategoryStruct.comp f g)]
[IsOpenImmersion g]
:
instance
AlgebraicGeometry.specializingMap_respectsIso :
(topologically @SpecializingMap).RespectsIso