Scheme-theoretic fiber #
Main result #
AlgebraicGeometry.Scheme.Hom.fiber
:f.fiber y
is the scheme theoretic fiber off
aty
.AlgebraicGeometry.Scheme.Hom.fiberHomeo
:f.fiber y
is homeomorphic tof ⁻¹' {y}
.AlgebraicGeometry.Scheme.Hom.finite_preimage
: Finite morphisms have finite fibers.AlgebraicGeometry.Scheme.Hom.discrete_fiber
: Finite morphisms have discrete fibers.
f.fiber y
is the scheme theoretic fiber of f
at y
.
Equations
- f.fiber y = CategoryTheory.Limits.pullback f (Y.fromSpecResidueField y)
Instances For
def
AlgebraicGeometry.Scheme.Hom.fiberι
{X Y : Scheme}
(f : X.Hom Y)
(y : ↑↑Y.toPresheafedSpace)
:
f.fiber y ⟶ X
f.fiberι y : f.fiber y ⟶ X
is the embedding of the scheme theoretic fiber into X
.
Equations
- f.fiberι y = CategoryTheory.Limits.pullback.fst f (Y.fromSpecResidueField y)
Instances For
instance
AlgebraicGeometry.instCanonicallyOver_1
{X Y : Scheme}
(f : X.Hom Y)
(y : ↑↑Y.toPresheafedSpace)
:
def
AlgebraicGeometry.Scheme.Hom.fiberToSpecResidueField
{X Y : Scheme}
(f : X.Hom Y)
(y : ↑↑Y.toPresheafedSpace)
:
The canonical map from the scheme theoretic fiber to the residue field.
Equations
- f.fiberToSpecResidueField y = CategoryTheory.Limits.pullback.snd f (Y.fromSpecResidueField y)
Instances For
@[reducible]
def
AlgebraicGeometry.Scheme.Hom.fiberOverSpecResidueField
{X Y : Scheme}
(f : X.Hom Y)
(y : ↑↑Y.toPresheafedSpace)
:
(f.fiber y).Over (Spec (Y.residueField y))
The fiber of f
at y
is naturally a κ(y)
-scheme.
Equations
- f.fiberOverSpecResidueField y = { hom := f.fiberToSpecResidueField y }
Instances For
theorem
AlgebraicGeometry.Scheme.Hom.fiberToSpecResidueField_apply
{X Y : Scheme}
(f : X.Hom Y)
(y : ↑↑Y.toPresheafedSpace)
(x : ↑↑(f.fiber y).toPresheafedSpace)
:
(f.fiberToSpecResidueField y).base x = IsLocalRing.closedPoint ↑(Y.residueField y)
instance
AlgebraicGeometry.instIsPreimmersionFiberι
{X Y : Scheme}
(f : X ⟶ Y)
(y : ↑↑Y.toPresheafedSpace)
:
def
AlgebraicGeometry.Scheme.Hom.fiberHomeo
{X Y : Scheme}
(f : X.Hom Y)
(y : ↑↑Y.toPresheafedSpace)
:
The scheme theoretic fiber of f
at y
is homeomorphic to f ⁻¹' {y}
.
Equations
- f.fiberHomeo y = (Homeomorph.ofIsEmbedding ⇑(f.fiberι y).base ⋯).trans (Homeomorph.setCongr ⋯)
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.Hom.fiberHomeo_apply
{X Y : Scheme}
(f : X.Hom Y)
(y : ↑↑Y.toPresheafedSpace)
(x : ↑↑(f.fiber y).toPresheafedSpace)
:
↑((f.fiberHomeo y) x) = (f.fiberι y).base x
@[simp]
theorem
AlgebraicGeometry.Scheme.Hom.fiberι_fiberHomeo_symm
{X Y : Scheme}
(f : X.Hom Y)
(y : ↑↑Y.toPresheafedSpace)
(x : ↑(⇑f.base ⁻¹' {y}))
:
(f.fiberι y).base ((f.fiberHomeo y).symm x) = ↑x
def
AlgebraicGeometry.Scheme.Hom.asFiber
{X Y : Scheme}
(f : X.Hom Y)
(x : ↑↑X.toPresheafedSpace)
:
↑↑(f.fiber (f.base x)).toPresheafedSpace
A point x
as a point in the fiber of f
at f x
.
Equations
- f.asFiber x = (f.fiberHomeo (f.base x)).symm ⟨x, ⋯⟩
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.Hom.fiberι_asFiber
{X Y : Scheme}
(f : X.Hom Y)
(x : ↑↑X.toPresheafedSpace)
:
(f.fiberι (f.base x)).base (f.asFiber x) = x
instance
AlgebraicGeometry.instCompactSpaceαTopologicalSpaceCarrierCommRingCatFiberOfQuasiCompact
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
(y : ↑↑Y.toPresheafedSpace)
:
CompactSpace ↑↑(Scheme.Hom.fiber f y).toPresheafedSpace
theorem
AlgebraicGeometry.QuasiCompact.isCompact_preimage_singleton
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
(y : ↑↑Y.toPresheafedSpace)
:
instance
AlgebraicGeometry.instIsAffineFiberOfIsAffineHom
{X Y : Scheme}
(f : X ⟶ Y)
[IsAffineHom f]
(y : ↑↑Y.toPresheafedSpace)
:
IsAffine (Scheme.Hom.fiber f y)
instance
AlgebraicGeometry.instJacobsonSpaceαTopologicalSpaceCarrierCommRingCatFiberOfLocallyOfFiniteType
{X Y : Scheme}
(f : X ⟶ Y)
(y : ↑↑Y.toPresheafedSpace)
[LocallyOfFiniteType f]
:
JacobsonSpace ↑↑(Scheme.Hom.fiber f y).toPresheafedSpace
instance
AlgebraicGeometry.instFiniteαTopologicalSpaceCarrierCommRingCatFiberOfIsFinite
{X Y : Scheme}
(f : X ⟶ Y)
(y : ↑↑Y.toPresheafedSpace)
[IsFinite f]
:
Finite ↑↑(Scheme.Hom.fiber f y).toPresheafedSpace
instance
AlgebraicGeometry.Scheme.Hom.discrete_fiber
{X Y : Scheme}
(f : X ⟶ Y)
(y : ↑↑Y.toPresheafedSpace)
[IsFinite f]
:
DiscreteTopology ↑↑(fiber f y).toPresheafedSpace