Documentation

Mathlib.AlgebraicGeometry.Fiber

Scheme-theoretic fiber #

Main result #

def AlgebraicGeometry.Scheme.Hom.fiber {X Y : Scheme} (f : X.Hom Y) (y : Y.toPresheafedSpace) :

f.fiber y is the scheme theoretic fiber of f at y.

Equations
Instances For
    def AlgebraicGeometry.Scheme.Hom.fiberι {X Y : Scheme} (f : X.Hom Y) (y : Y.toPresheafedSpace) :
    f.fiber y X

    f.fiberι y : f.fiber y ⟶ X is the embedding of the scheme theoretic fiber into X.

    Equations
    Instances For
      def AlgebraicGeometry.Scheme.Hom.fiberToSpecResidueField {X Y : Scheme} (f : X.Hom Y) (y : Y.toPresheafedSpace) :
      f.fiber y Spec (Y.residueField y)

      The canonical map from the scheme theoretic fiber to the residue field.

      Equations
      Instances For
        @[reducible]
        def AlgebraicGeometry.Scheme.Hom.fiberOverSpecResidueField {X Y : Scheme} (f : X.Hom Y) (y : Y.toPresheafedSpace) :
        (f.fiber y).Over (Spec (Y.residueField y))

        The fiber of f at y is naturally a κ(y)-scheme.

        Equations
        • f.fiberOverSpecResidueField y = { hom := f.fiberToSpecResidueField y }
        Instances For
          theorem AlgebraicGeometry.Scheme.Hom.fiberToSpecResidueField_apply {X Y : Scheme} (f : X.Hom Y) (y : Y.toPresheafedSpace) (x : (f.fiber y).toPresheafedSpace) :
          (f.fiberToSpecResidueField y).base x = IsLocalRing.closedPoint (Y.residueField y)
          theorem AlgebraicGeometry.Scheme.Hom.range_fiberι {X Y : Scheme} (f : X.Hom Y) (y : Y.toPresheafedSpace) :
          Set.range (f.fiberι y).base = f.base ⁻¹' {y}
          instance AlgebraicGeometry.instIsPreimmersionFiberι {X Y : Scheme} (f : X Y) (y : Y.toPresheafedSpace) :
          def AlgebraicGeometry.Scheme.Hom.fiberHomeo {X Y : Scheme} (f : X.Hom Y) (y : Y.toPresheafedSpace) :
          (f.fiber y).toPresheafedSpace ≃ₜ (f.base ⁻¹' {y})

          The scheme theoretic fiber of f at y is homeomorphic to f ⁻¹' {y}.

          Equations
          Instances For
            @[simp]
            theorem AlgebraicGeometry.Scheme.Hom.fiberHomeo_apply {X Y : Scheme} (f : X.Hom Y) (y : Y.toPresheafedSpace) (x : (f.fiber y).toPresheafedSpace) :
            ((f.fiberHomeo y) x) = (f.fiberι y).base x
            @[simp]
            theorem AlgebraicGeometry.Scheme.Hom.fiberι_fiberHomeo_symm {X Y : Scheme} (f : X.Hom Y) (y : Y.toPresheafedSpace) (x : (f.base ⁻¹' {y})) :
            (f.fiberι y).base ((f.fiberHomeo y).symm x) = x
            def AlgebraicGeometry.Scheme.Hom.asFiber {X Y : Scheme} (f : X.Hom Y) (x : X.toPresheafedSpace) :
            (f.fiber (f.base x)).toPresheafedSpace

            A point x as a point in the fiber of f at f x.

            Equations
            • f.asFiber x = (f.fiberHomeo (f.base x)).symm x,
            Instances For
              @[simp]
              theorem AlgebraicGeometry.Scheme.Hom.fiberι_asFiber {X Y : Scheme} (f : X.Hom Y) (x : X.toPresheafedSpace) :
              (f.fiberι (f.base x)).base (f.asFiber x) = x
              instance AlgebraicGeometry.instCompactSpaceαTopologicalSpaceCarrierCommRingCatFiberOfQuasiCompact {X Y : Scheme} (f : X Y) [QuasiCompact f] (y : Y.toPresheafedSpace) :
              CompactSpace (Scheme.Hom.fiber f y).toPresheafedSpace
              theorem AlgebraicGeometry.QuasiCompact.isCompact_preimage_singleton {X Y : Scheme} (f : X Y) [QuasiCompact f] (y : Y.toPresheafedSpace) :
              IsCompact (f.base ⁻¹' {y})
              instance AlgebraicGeometry.instIsAffineFiberOfIsAffineHom {X Y : Scheme} (f : X Y) [IsAffineHom f] (y : Y.toPresheafedSpace) :
              instance AlgebraicGeometry.instFiniteαTopologicalSpaceCarrierCommRingCatFiberOfIsFinite {X Y : Scheme} (f : X Y) (y : Y.toPresheafedSpace) [IsFinite f] :
              Finite (Scheme.Hom.fiber f y).toPresheafedSpace
              theorem AlgebraicGeometry.IsFinite.finite_preimage_singleton {X Y : Scheme} (f : X Y) [IsFinite f] (y : Y.toPresheafedSpace) :
              (f.base ⁻¹' {y}).Finite
              theorem AlgebraicGeometry.Scheme.Hom.finite_preimage {X Y : Scheme} (f : X.Hom Y) [IsFinite f] {s : Set Y.toPresheafedSpace} (hs : s.Finite) :
              (f.base ⁻¹' s).Finite
              instance AlgebraicGeometry.Scheme.Hom.discrete_fiber {X Y : Scheme} (f : X Y) (y : Y.toPresheafedSpace) [IsFinite f] :
              DiscreteTopology (fiber f y).toPresheafedSpace