Documentation

Mathlib.AlgebraicGeometry.ResidueField

Residue fields of points #

Main definitions #

The following are in the AlgebraicGeometry.Scheme namespace:

The residue field of X at a point x is the residue field of the stalk of X at x.

Equations
Instances For
    instance AlgebraicGeometry.Scheme.instFieldαCommRingResidueField (X : AlgebraicGeometry.Scheme) (x : X.toPresheafedSpace) :
    Field (X.residueField x)
    Equations
    def AlgebraicGeometry.Scheme.residue (X : AlgebraicGeometry.Scheme) (x : X.toPresheafedSpace) :
    X.presheaf.stalk x X.residueField x

    The residue map from the stalk to the residue field.

    Equations
    Instances For

      See AlgebraicGeometry.IsClosedImmersion.Spec_map_residue for the stronger result that Spec.map (X.residue x) is a closed immersion.

      Equations
      • =
      @[simp]
      theorem AlgebraicGeometry.Scheme.Spec_map_residue_apply {X : AlgebraicGeometry.Scheme} (x : X.toPresheafedSpace) (s : (AlgebraicGeometry.Spec (X.residueField x)).toPresheafedSpace) :
      (AlgebraicGeometry.Spec.map (X.residue x)).base s = IsLocalRing.closedPoint (X.presheaf.stalk x)
      theorem AlgebraicGeometry.Scheme.residue_surjective (X : AlgebraicGeometry.Scheme) (x : X.toPresheafedSpace) :
      Function.Surjective (X.residue x)
      instance AlgebraicGeometry.Scheme.instEpiCommRingCatResidue (X : AlgebraicGeometry.Scheme) (x : X.toPresheafedSpace) :
      CategoryTheory.Epi (X.residue x)
      Equations
      • =
      def AlgebraicGeometry.Scheme.descResidueField {K : Type u} [Field K] {X : AlgebraicGeometry.Scheme} {x : X.toPresheafedSpace} (f : X.presheaf.stalk x CommRingCat.of K) [IsLocalHom f] :
      X.residueField x CommRingCat.of K

      If K is a field and f : 𝒪_{X, x} ⟶ K is a ring map, then this is the induced map κ(x) ⟶ K.

      Equations
      Instances For
        def AlgebraicGeometry.Scheme.evaluation (X : AlgebraicGeometry.Scheme) (U : X.Opens) (x : X.toPresheafedSpace) (hx : x U) :
        X.presheaf.obj (Opposite.op U) X.residueField x

        If U is an open of X containing x, we have a canonical ring map from the sections over U to the residue field of x.

        If we interpret sections over U as functions of X defined on U, then this ring map corresponds to evaluation at x.

        Equations
        Instances For
          theorem AlgebraicGeometry.Scheme.germ_residue (X : AlgebraicGeometry.Scheme) {U : X.Opens} (x : X.toPresheafedSpace) (hx : x U) :
          CategoryTheory.CategoryStruct.comp (X.presheaf.germ U x hx) (X.residue x) = X.evaluation U x hx
          theorem AlgebraicGeometry.Scheme.germ_residue_assoc (X : AlgebraicGeometry.Scheme) {U : X.Opens} (x : X.toPresheafedSpace) (hx : x U) {Z : CommRingCat} (h : X.residueField x Z) :
          CategoryTheory.CategoryStruct.comp (X.presheaf.germ U x hx) (CategoryTheory.CategoryStruct.comp (X.residue x) h) = CategoryTheory.CategoryStruct.comp (X.evaluation U x hx) h
          @[reducible, inline]
          abbrev AlgebraicGeometry.Scheme.Γevaluation (X : AlgebraicGeometry.Scheme) (x : X.toPresheafedSpace) :
          X.presheaf.obj (Opposite.op ) X.residueField x

          The global evaluation map from Γ(X, ⊤) to the residue field at x.

          Equations
          Instances For
            @[simp]
            theorem AlgebraicGeometry.Scheme.evaluation_eq_zero_iff_not_mem_basicOpen (X : AlgebraicGeometry.Scheme) {U : X.Opens} (x : X.toPresheafedSpace) (hx : x U) (f : (X.presheaf.obj (Opposite.op U))) :
            (X.evaluation U x hx) f = 0 xX.basicOpen f
            theorem AlgebraicGeometry.Scheme.evaluation_ne_zero_iff_mem_basicOpen (X : AlgebraicGeometry.Scheme) {U : X.Opens} (x : X.toPresheafedSpace) (hx : x U) (f : (X.presheaf.obj (Opposite.op U))) :
            (X.evaluation U x hx) f 0 x X.basicOpen f
            theorem AlgebraicGeometry.Scheme.basicOpen_eq_bot_iff_forall_evaluation_eq_zero (X : AlgebraicGeometry.Scheme) {U : X.Opens} (f : (X.presheaf.obj (Opposite.op U))) :
            X.basicOpen f = ∀ (x : U), (X.evaluation U x ) f = 0
            def AlgebraicGeometry.Scheme.Hom.residueFieldMap {X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) (x : X.toPresheafedSpace) :
            Y.residueField (f.base x) X.residueField x

            If X ⟶ Y is a morphism of locally ringed spaces and x a point of X, we obtain a morphism of residue fields in the other direction.

            Equations
            Instances For
              theorem AlgebraicGeometry.Scheme.evaluation_naturality {X Y : AlgebraicGeometry.Scheme} (f : X Y) {V : Y.Opens} (x : X.toPresheafedSpace) (hx : f.base x V) :
              theorem AlgebraicGeometry.Scheme.evaluation_naturality_apply {X Y : AlgebraicGeometry.Scheme} (f : X Y) {V : Y.Opens} (x : X.toPresheafedSpace) (hx : f.base x V) (s : (Y.presheaf.obj (Opposite.op V))) :
              (AlgebraicGeometry.Scheme.Hom.residueFieldMap f x) ((Y.evaluation V (f.base x) hx) s) = (X.evaluation ((TopologicalSpace.Opens.map f.base).obj V) x hx) ((AlgebraicGeometry.Scheme.Hom.app f V) s)
              theorem AlgebraicGeometry.Scheme.Γevaluation_naturality_apply {X Y : AlgebraicGeometry.Scheme} (f : X Y) (x : X.toPresheafedSpace) (a : (Y.presheaf.obj (Opposite.op ))) :
              (AlgebraicGeometry.Scheme.Hom.residueFieldMap f x) ((Y.Γevaluation (f.base x)) a) = (X.Γevaluation x) ((f.c.app (Opposite.op )) a)
              def AlgebraicGeometry.Scheme.residueFieldCongr {X : AlgebraicGeometry.Scheme} {x y : X.toPresheafedSpace} (h : x = y) :
              X.residueField x X.residueField y

              The isomorphism between residue fields of equal points.

              Equations
              Instances For
                theorem AlgebraicGeometry.Scheme.residue_residueFieldCongr (X : AlgebraicGeometry.Scheme) {x y : X.toPresheafedSpace} (h : x = y) :
                def AlgebraicGeometry.Scheme.fromSpecResidueField (X : AlgebraicGeometry.Scheme) (x : X.toPresheafedSpace) :
                AlgebraicGeometry.Spec (X.residueField x) X

                The canonical map Spec κ(x) ⟶ X.

                Equations
                Instances For
                  Equations
                  • =
                  noncomputable instance AlgebraicGeometry.Scheme.instOverSpecResidueField {X : AlgebraicGeometry.Scheme} (x : X.toPresheafedSpace) :
                  (AlgebraicGeometry.Spec (X.residueField x)).Over X
                  Equations
                  @[simp]
                  theorem AlgebraicGeometry.Scheme.instOverSpecResidueField_over {X : AlgebraicGeometry.Scheme} (x : X.toPresheafedSpace) :
                  AlgebraicGeometry.Spec (X.residueField x) X = X.fromSpecResidueField x
                  Equations
                  @[simp]
                  theorem AlgebraicGeometry.Scheme.instCanonicallyOver_over {X : AlgebraicGeometry.Scheme} (x : X.toPresheafedSpace) :
                  AlgebraicGeometry.Spec (X.residueField x) X = X.fromSpecResidueField x
                  @[simp]
                  @[simp]
                  theorem AlgebraicGeometry.Scheme.fromSpecResidueField_apply {X : AlgebraicGeometry.Scheme} (x : X.toPresheafedSpace) (s : (AlgebraicGeometry.Spec (X.residueField x)).toPresheafedSpace) :
                  (X.fromSpecResidueField x).base s = x
                  theorem AlgebraicGeometry.Scheme.range_fromSpecResidueField {X : AlgebraicGeometry.Scheme} (x : X.toPresheafedSpace) :
                  Set.range (X.fromSpecResidueField x).base = {x}
                  theorem AlgebraicGeometry.Scheme.SpecToEquivOfField_eq_iff {K : Type u_1} [Field K] {X : AlgebraicGeometry.Scheme} {f₁ f₂ : (x : X.toPresheafedSpace) × (X.residueField x CommRingCat.of K)} :
                  f₁ = f₂ ∃ (e : f₁.fst = f₂.fst), f₁.snd = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.residueFieldCongr e).hom f₂.snd

                  A helper lemma to work with AlgebraicGeometry.Scheme.SpecToEquivOfField.

                  def AlgebraicGeometry.Scheme.SpecToEquivOfField (K : Type u) [Field K] (X : AlgebraicGeometry.Scheme) :
                  (AlgebraicGeometry.Spec (CommRingCat.of K) X) (x : X.toPresheafedSpace) × (X.residueField x CommRingCat.of K)

                  For a field K and a scheme X, the morphisms Spec K ⟶ X bijectively correspond to pairs of points x of X and embeddings κ(x) ⟶ K.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For