Documentation

Mathlib.AlgebraicGeometry.Morphisms.Affine

Affine morphisms of schemes #

A morphism of schemes f : X ⟶ Y is affine if the preimage of an arbitrary affine open subset of Y is affine.

It is equivalent to ask only that Y is covered by affine opens whose preimage is affine.

Main results #

We also provide the instance HasAffineProperty @IsAffineHom fun X _ _ _ ↦ IsAffine X.

TODO #

class AlgebraicGeometry.IsAffineHom {X Y : Scheme} (f : X Y) :

A morphism of schemes X ⟶ Y is affine if the preimage of any affine open subset of Y is affine.

Instances
    theorem AlgebraicGeometry.isAffineHom_iff {X Y : Scheme} (f : X Y) :
    IsAffineHom f ∀ (U : Y.Opens), IsAffineOpen UIsAffineOpen ((TopologicalSpace.Opens.map f.base).obj U)
    theorem AlgebraicGeometry.IsAffineOpen.preimage {X Y : Scheme} {U : Y.Opens} (hU : IsAffineOpen U) (f : X Y) [IsAffineHom f] :
    def AlgebraicGeometry.affinePreimage {X Y : Scheme} (f : X Y) [IsAffineHom f] (U : Y.affineOpens) :
    X.affineOpens

    The preimage of an affine open as an Scheme.affine_opens.

    Equations
    Instances For
      @[simp]
      theorem AlgebraicGeometry.affinePreimage_coe {X Y : Scheme} (f : X Y) [IsAffineHom f] (U : Y.affineOpens) :
      (affinePreimage f U) = (TopologicalSpace.Opens.map f.base).obj U
      instance AlgebraicGeometry.instIsAffineHomιBasicOpen {X : Scheme} (r : (X.presheaf.obj (Opposite.op ))) :
      IsAffineHom (X.basicOpen r)
      theorem AlgebraicGeometry.isAffineOpen_of_isAffineOpen_basicOpen_aux {X : Scheme} (s : Set (X.presheaf.obj (Opposite.op ))) (hs : Ideal.span s = ) (hs₂ : is, IsAffineOpen (X.basicOpen i)) :
      QuasiSeparatedSpace X.toPresheafedSpace
      theorem AlgebraicGeometry.isAffine_of_isAffineOpen_basicOpen {X : Scheme} (s : Set (X.presheaf.obj (Opposite.op ))) (hs : Ideal.span s = ) (hs₂ : is, IsAffineOpen (X.basicOpen i)) :
      theorem AlgebraicGeometry.isAffineOpen_of_isAffineOpen_basicOpen {X : Scheme} (U : X.Opens) (s : Set (X.presheaf.obj (Opposite.op U))) (hs : Ideal.span s = ) (hs₂ : is, IsAffineOpen (X.basicOpen i)) :

      If s is a spanning set of Γ(X, U), such that each X.basicOpen i is affine, then U is also affine.

      @[instance 100]