Documentation

Mathlib.AlgebraicGeometry.Morphisms.Descent

Descent of morphism properties #

Let P and P' be morphism properties. In this file we show some results to deduce that P descends along P' from a codescent property of ring homomorphisms.

Main results #

TODO #

If P is local at the source, every quasi compact scheme is dominated by an affine scheme via p : Y ⟶ X such that p satisfies P.

If P is local at the target, to show P descends along P' we may assume the base to be affine.

theorem AlgebraicGeometry.of_pullback_fst_Spec_of_codescendsAlong (P P' : CategoryTheory.MorphismProperty Scheme) {Q Q' : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop} [P.RespectsIso] (hQQ' : RingHom.CodescendsAlong (fun {R S : Type u} [CommRing R] [CommRing S] => Q) fun {R S : Type u} [CommRing R] [CommRing S] => Q') (H₁ : ∀ {R S : CommRingCat} {f : R S}, P' (Spec.map f)Q' (CommRingCat.Hom.hom f)) (H₂ : ∀ {R S : CommRingCat} {f : R S}, P (Spec.map f) Q (CommRingCat.Hom.hom f)) {R S T : CommRingCat} {f : Spec T Spec R} {g : Spec S Spec R} (h : P' f) (hf : P (CategoryTheory.Limits.pullback.fst f g)) :
P g
theorem AlgebraicGeometry.IsStableUnderBaseChange.of_pullback_fst_of_isAffine (P P' : CategoryTheory.MorphismProperty Scheme) [P'.RespectsIso] [P'.IsStableUnderComposition] [P.IsStableUnderBaseChange] (H : ∀ {R : CommRingCat} {S X : Scheme} (f : Spec R S) (g : X S), P' fP (CategoryTheory.Limits.pullback.fst f g)P g) {X Y Z T : Scheme} [IsAffine T] (p : T X) (hp : P' p) (f : X Z) (g : Y Z) (h : P' f) (hf : P (CategoryTheory.Limits.pullback.fst f g)) :
P g

If X admits a morphism p : T ⟶ X from an affine scheme satisfying P', to show a property descends along a morphism f : X ⟶ ZsatisfyingP', X` may assumed to be affine.

theorem AlgebraicGeometry.HasRingHomProperty.descendsAlong (P P' : CategoryTheory.MorphismProperty Scheme) (Q Q' : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop) [P'.IsStableUnderBaseChange] [P'.IsStableUnderComposition] [P.IsStableUnderBaseChange] (H₁ : @IsLocalIso ⊓ @Surjective P') (H₂ : ∀ {R S : CommRingCat} {f : R S}, P' (Spec.map f)Q' (CommRingCat.Hom.hom f)) [HasRingHomProperty P fun {R S : Type u} [CommRing R] [CommRing S] => Q] (hQQ' : RingHom.CodescendsAlong (fun {R S : Type u} [CommRing R] [CommRing S] => Q) fun {R S : Type u} [CommRing R] [CommRing S] => Q') :

Let P be the morphism property associated to the ring hom property Q. Suppose

  • P' implies Q' on global sections for affine schemes,
  • P' is satisfied for all surjective, local isomorphisms, and
  • Q codescend along Q'.

Then P descends along quasi-compact morphisms satisfiying P'.

Note: The second condition is in particular satisfied for faithfully flat morphisms.

theorem AlgebraicGeometry.HasAffineProperty.descendsAlong_of_affineAnd (P P' : CategoryTheory.MorphismProperty Scheme) (Q Q' : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop) [P'.IsStableUnderBaseChange] [P'.IsStableUnderComposition] [P.IsStableUnderBaseChange] (H₁ : @IsLocalIso ⊓ @Surjective P') (H₂ : ∀ {R S : CommRingCat} {f : R S}, P' (Spec.map f)Q' (CommRingCat.Hom.hom f)) (hP : HasAffineProperty P (affineAnd fun {R S : Type u} [CommRing R] [CommRing S] => Q)) [CategoryTheory.MorphismProperty.DescendsAlong (@IsAffineHom) P'] (hQ : RingHom.RespectsIso fun {R S : Type u} [CommRing R] [CommRing S] => Q) (hQQ' : RingHom.CodescendsAlong (fun {R S : Type u} [CommRing R] [CommRing S] => Q) fun {R S : Type u} [CommRing R] [CommRing S] => Q') :

Let P be a morphism property associated with affineAnd Q. Suppose

  • P' implies Q' on global sections on affine schemes,
  • P' is satisfied for surjective, local isomorphisms,
  • affine morphisms descend along P'', and
  • Q codescends along Q',

Then P descends along quasi-compact morphisms satisfying P'.

Note: The second condition is in particular satisfied for faithfully flat morphisms.