The covariant involution of the category of simplicial objects #
In this file, we define the covariant involution SimplicialObject.opFunctor
of the category of simplicial objects that is induced by the
covariant involution SimplexCategory.rev : SimplexCategory ⥤ SimplexCategory
.
The covariant involution of the category of simplicial objects
that is induced by the involution
SimplexCategory.rev : SimplexCategory ⥤ SimplexCategory
.
Equations
Instances For
def
SimplicialObject.opObjIso
{C : Type u_1}
[CategoryTheory.Category.{v, u_1} C]
{X : CategoryTheory.SimplicialObject C}
{n : SimplexCategoryᵒᵖ}
:
The isomorphism (opFunctor.obj X).obj n ≅ X.obj n
when X
is a simplicial object.
Equations
Instances For
@[simp]
theorem
SimplicialObject.opFunctor_map_app
{C : Type u_1}
[CategoryTheory.Category.{v, u_1} C]
{X Y : CategoryTheory.SimplicialObject C}
(f : X ⟶ Y)
(n : SimplexCategoryᵒᵖ)
:
@[simp]
theorem
SimplicialObject.opFunctor_obj_map
{C : Type u_1}
[CategoryTheory.Category.{v, u_1} C]
(X : CategoryTheory.SimplicialObject C)
{n m : SimplexCategoryᵒᵖ}
(f : n ⟶ m)
:
@[simp]
theorem
SimplicialObject.opFunctor_obj_δ
{C : Type u_1}
[CategoryTheory.Category.{v, u_1} C]
(X : CategoryTheory.SimplicialObject C)
{n : ℕ}
(i : Fin (n + 2))
:
@[simp]
theorem
SimplicialObject.opFunctor_obj_σ
{C : Type u_1}
[CategoryTheory.Category.{v, u_1} C]
(X : CategoryTheory.SimplicialObject C)
{n : ℕ}
(i : Fin (n + 1))
:
def
SimplicialObject.opFunctorCompOpFunctorIso
{C : Type u_1}
[CategoryTheory.Category.{v, u_1} C]
:
The functor opFunctor : SimplicialObject C ⥤ SimplicialObject C
is a covariant involution.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
@[simp]
The functor opFunctor : SimplicialObject C ⥤ SimplicialObject C
as an equivalence of categories.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
@[simp]
theorem
SimplicialObject.opEquivalence_inverse
{C : Type u_1}
[CategoryTheory.Category.{v, u_1} C]
:
@[simp]
@[simp]
theorem
SimplicialObject.opEquivalence_functor
{C : Type u_1}
[CategoryTheory.Category.{v, u_1} C]
: