Documentation

Mathlib.AlgebraicTopology.SimplicialSet.Dimension

Dimension of a simplicial set #

For a simplicial set X and d : ℕ, we introduce a typeclass X.HasDimensionLT d saying that the dimension of X is < d, i.e. all nondegenerate simplices of X are of dimension < d.

class SSet.HasDimensionLT (X : SSet) (d : ) :

A simplicial set X has dimension < d iff for any n : ℕ such that d ≤ n, all n-simplices are degenerate.

Instances
    theorem SSet.hasDimensionLT_iff (X : SSet) (d : ) :
    X.HasDimensionLT d ∀ (n : ), d nX.degenerate n =
    @[reducible, inline]
    abbrev SSet.HasDimensionLE (X : SSet) (d : ) :

    A simplicial set has dimension ≤ d if it has dimension < d + 1.

    Equations
    Instances For
      theorem SSet.dim_lt_of_nonDegenerate (X : SSet) {n : } (x : (X.nonDegenerate n)) (d : ) [X.HasDimensionLT d] :
      n < d
      theorem SSet.dim_le_of_nonDegenerate (X : SSet) {n : } (x : (X.nonDegenerate n)) (d : ) [X.HasDimensionLE d] :
      n d
      theorem SSet.hasDimensionLT_of_le (X : SSet) (d : ) [X.HasDimensionLT d] (n : ) (hn : d n := by cutsat) :
      theorem SSet.hasDimensionLT_iSup_iff {X : SSet} {ι : Type u_1} (A : ιX.Subcomplex) (d : ) :
      (⨆ (i : ι), A i).toSSet.HasDimensionLT d ∀ (i : ι), (A i).toSSet.HasDimensionLT d