Dimension of a simplicial set #
For a simplicial set X and d : ℕ, we introduce a typeclass
X.HasDimensionLT d saying that the dimension of X is < d,
i.e. all nondegenerate simplices of X are of dimension < d.
A simplicial set X has dimension < d iff for any n : ℕ
such that d ≤ n, all n-simplices are degenerate.
Instances
@[reducible, inline]
A simplicial set has dimension ≤ d if it has dimension < d + 1.
Equations
- X.HasDimensionLE d = X.HasDimensionLT (d + 1)
Instances For
theorem
SSet.degenerate_eq_top_of_hasDimensionLT
(X : SSet)
(d : ℕ)
[X.HasDimensionLT d]
(n : ℕ)
(hn : d ≤ n)
:
theorem
SSet.nonDegenerate_eq_bot_of_hasDimensionLT
(X : SSet)
(d : ℕ)
[X.HasDimensionLT d]
(n : ℕ)
(hn : d ≤ n)
:
theorem
SSet.dim_lt_of_nonDegenerate
(X : SSet)
{n : ℕ}
(x : ↑(X.nonDegenerate n))
(d : ℕ)
[X.HasDimensionLT d]
:
theorem
SSet.dim_le_of_nonDegenerate
(X : SSet)
{n : ℕ}
(x : ↑(X.nonDegenerate n))
(d : ℕ)
[X.HasDimensionLE d]
:
theorem
SSet.hasDimensionLT_of_le
(X : SSet)
(d : ℕ)
[X.HasDimensionLT d]
(n : ℕ)
(hn : d ≤ n := by cutsat)
:
X.HasDimensionLT n
instance
SSet.instHasDimensionLTHAddNat
(X : SSet)
(n : ℕ)
[X.HasDimensionLT n]
(k : ℕ)
:
X.HasDimensionLT (n + k)
instance
SSet.Subcomplex.instHasDimensionLTToSSet
{X : SSet}
(d : ℕ)
[X.HasDimensionLT d]
(A : X.Subcomplex)
:
A.toSSet.HasDimensionLT d
theorem
SSet.Subcomplex.le_iff_of_hasDimensionLT
{X : SSet}
(A B : X.Subcomplex)
(d : ℕ)
[X.HasDimensionLT d]
:
A ≤ B ↔ ∀ i < d, A.obj (Opposite.op (SimplexCategory.mk i)) ∩ X.nonDegenerate i ⊆ B.obj (Opposite.op (SimplexCategory.mk i))
theorem
SSet.Subcomplex.eq_top_iff_of_hasDimensionLT
{X : SSet}
(A : X.Subcomplex)
(d : ℕ)
[X.HasDimensionLT d]
:
theorem
SSet.hasDimensionLT_of_mono
{X Y : SSet}
(f : X ⟶ Y)
[CategoryTheory.Mono f]
(d : ℕ)
[Y.HasDimensionLT d]
:
X.HasDimensionLT d
theorem
SSet.Subcomplex.hasDimensionLT_of_le
{X : SSet}
{A B : X.Subcomplex}
(h : A ≤ B)
(d : ℕ)
[B.toSSet.HasDimensionLT d]
:
A.toSSet.HasDimensionLT d
theorem
SSet.hasDimensionLT_of_epi
{X Y : SSet}
(f : X ⟶ Y)
[CategoryTheory.Epi f]
(d : ℕ)
[X.HasDimensionLT d]
:
Y.HasDimensionLT d