Documentation

Mathlib.AlgebraicTopology.SimplicialSet.NonDegenerateSimplices

The partially ordered type of non degenerate simplices of a simplicial set #

In this file, we introduce the partially ordered type X.N of non degenerate simplices of a simplicial set X. We obtain an embedding X.orderEmbeddingN : X.N ↪o X.Subcomplex which sends a non degenerate simplex to the subcomplex of X it generates.

Given an arbitrary simplex x : X.S, we show that there is a unique non degenerate x.toN : X.N such that x.toN.subcomplex = x.subcomplex.

structure SSet.N (X : SSet) extends X.S :

The type of non degenerate simplices of a simplicial set.

Instances For
    theorem SSet.N.mk'_surjective {X : SSet} (s : X.N) :
    ∃ (t : X.S) (ht : t.simplex X.nonDegenerate t.dim), s = { toS := t, nonDegenerate := ht }
    def SSet.N.mk {X : SSet} {n : } (x : X.obj (Opposite.op (SimplexCategory.mk n))) (hx : x X.nonDegenerate n) :
    X.N

    Constructor for the type of non degenerate simplices of a simplicial set.

    Equations
    • SSet.N.mk x hx = { dim := n, simplex := x, nonDegenerate := hx }
    Instances For
      @[simp]
      theorem SSet.N.mk_dim {X : SSet} {n : } (x : X.obj (Opposite.op (SimplexCategory.mk n))) (hx : x X.nonDegenerate n) :
      (mk x hx).dim = n
      @[simp]
      theorem SSet.N.mk_simplex {X : SSet} {n : } (x : X.obj (Opposite.op (SimplexCategory.mk n))) (hx : x X.nonDegenerate n) :
      (mk x hx).simplex = x
      theorem SSet.N.mk_surjective {X : SSet} (x : X.N) :
      ∃ (n : ) (y : (X.nonDegenerate n)), x = mk y
      theorem SSet.N.le_iff {X : SSet} {x y : X.N} :
      theorem SSet.N.dim_le_of_le {X : SSet} {x y : X.N} (h : x y) :
      x.dim y.dim
      theorem SSet.N.dim_lt_of_lt {X : SSet} {x y : X.N} (h : x < y) :
      x.dim < y.dim
      Equations
      theorem SSet.N.subcomplex_injective {X : SSet} {x y : X.N} (h : x.subcomplex = y.subcomplex) :
      x = y
      theorem SSet.N.eq_iff {X : SSet} {x y : X.N} :
      @[reducible, inline]
      abbrev SSet.N.cast {X : SSet} (s : X.N) {d : } (hd : s.dim = d) :
      X.N

      When s : X.N is such that s.dim = d, this is a term that is equal to s, but whose dimension if definitionally equal to d.

      Equations
      Instances For
        theorem SSet.N.cast_eq_self {X : SSet} (s : X.N) {d : } (hd : s.dim = d) :
        s.cast hd = s

        The map which sends a non degenerate simplex of a simplicial set to the subcomplex it generates is an order embedding.

        Equations
        Instances For
          @[simp]
          noncomputable def SSet.S.toN {X : SSet} (x : X.S) :
          X.N

          This is the non degenerate simplex of a simplicial set which generates the same subcomplex as a given simplex.

          Equations
          Instances For
            @[simp]
            theorem SSet.S.toN_eq_iff {X : SSet} {x : X.S} {y : X.N} :