The partially ordered type of non degenerate simplices of a simplicial set #
In this file, we introduce the partially ordered type X.N
of
non degenerate simplices of a simplicial set X
. We obtain
an embedding X.orderEmbeddingN : X.N ↪o X.Subcomplex
which sends
a non degenerate simplex to the subcomplex of X
it generates.
Given an arbitrary simplex x : X.S
, we show that there is a unique
non degenerate x.toN : X.N
such that x.toN.subcomplex = x.subcomplex
.
def
SSet.N.mk
{X : SSet}
{n : ℕ}
(x : X.obj (Opposite.op (SimplexCategory.mk n)))
(hx : x ∈ X.nonDegenerate n)
:
X.N
Constructor for the type of non degenerate simplices of a simplicial set.
Instances For
@[simp]
theorem
SSet.N.mk_dim
{X : SSet}
{n : ℕ}
(x : X.obj (Opposite.op (SimplexCategory.mk n)))
(hx : x ∈ X.nonDegenerate n)
:
@[simp]
theorem
SSet.N.mk_simplex
{X : SSet}
{n : ℕ}
(x : X.obj (Opposite.op (SimplexCategory.mk n)))
(hx : x ∈ X.nonDegenerate n)
:
theorem
SSet.N.mk_surjective
{X : SSet}
(x : X.N)
:
∃ (n : ℕ) (y : ↑(X.nonDegenerate n)), x = mk ↑y ⋯
Equations
theorem
SSet.N.le_iff_exists_mono
{X : SSet}
{x y : X.N}
:
x ≤ y ↔ ∃ (f : SimplexCategory.mk x.dim ⟶ SimplexCategory.mk y.dim) (_ : CategoryTheory.Mono f),
X.map f.op y.simplex = x.simplex
Equations
- SSet.N.instPartialOrder = { toPreorder := SSet.N.instPreorder, le_antisymm := ⋯ }
The map which sends a non degenerate simplex of a simplicial set to the subcomplex it generates is an order embedding.
Equations
- X.orderEmbeddingN = { toFun := fun (x : X.N) => x.subcomplex, inj' := ⋯, map_rel_iff' := ⋯ }
Instances For
@[simp]