Documentation

Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism

Relative morphisms of simplicial sets #

Given two simplicial sets X and Y, and subcomplexes A of X, and B of Y, we introduce a type RelativeMorphism A B φ of morphisms X ⟶ Y which induce a given morphism of simplicial sets A ⟶ B. We define homotopies between these relative morphisms and introduce the quotient type of homotopy classes.

structure SSet.RelativeMorphism {X Y : SSet} (A : X.Subcomplex) (B : Y.Subcomplex) (φ : A.toSSet B.toSSet) :

Given a morphism of simplicial sets φ : A ⟶ B with A : X.Subcomplex and B : Y.Subcomplex, this is the type of morphisms X ⟶ Y which induce φ.

Instances For
    theorem SSet.RelativeMorphism.ext_iff {X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {x y : RelativeMorphism A B φ} :
    x = y x.map = y.map
    theorem SSet.RelativeMorphism.ext {X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {x y : RelativeMorphism A B φ} (map : x.map = y.map) :
    x = y

    The constant relative morphism when the given subcomplex of the target is generated by a 0-simplex.

    Equations
    Instances For

      Given a morphism f : X ⟶ Y of simplicial set which sends a 0-simplex x to y, this is the pointed morphism (X, x) ⟶ (Y, y).

      Equations
      Instances For
        theorem SSet.RelativeMorphism.map_eq_of_mem {X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} (f : RelativeMorphism A B φ) {n : SimplexCategoryᵒᵖ} (a : X.obj n) (ha : a A.obj n) :
        f.map.app n a = (φ.app n a, ha)
        @[simp]
        theorem SSet.RelativeMorphism.map_coe {X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} (f : RelativeMorphism A B φ) {n : SimplexCategoryᵒᵖ} (a : (A.obj n)) :
        f.map.app n a = (φ.app n a)
        theorem SSet.RelativeMorphism.image_le {X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} (f : RelativeMorphism A B φ) :
        A.image f.map B
        theorem SSet.RelativeMorphism.le_preimage {X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} (f : RelativeMorphism A B φ) :
        theorem SSet.RelativeMorphism.Homotopy.ext_iff {X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {f g : RelativeMorphism A B φ} {x y : f.Homotopy g} :
        x = y x.h = y.h
        theorem SSet.RelativeMorphism.Homotopy.ext {X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {f g : RelativeMorphism A B φ} {x y : f.Homotopy g} (h : x.h = y.h) :
        x = y
        noncomputable def SSet.RelativeMorphism.Homotopy.ofEq {X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {f g : RelativeMorphism A B φ} (h : f = g) :

        Two equal relative morphisms are homotopic.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          noncomputable def SSet.RelativeMorphism.Homotopy.refl {X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} (f : RelativeMorphism A B φ) :

          A relative morphism is homotopic to itself.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            The type of homotopy classes of relative morphisms.

            Equations
            Instances For

              The homotopy class of a relative morphism.

              Equations
              Instances For
                def SSet.RelativeMorphism.comp {X Y Z : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} (f : RelativeMorphism A B φ) {C : Z.Subcomplex} {ψ : B.toSSet C.toSSet} (f' : RelativeMorphism B C ψ) {φψ : A.toSSet C.toSSet} (fac : CategoryTheory.CategoryStruct.comp φ ψ = φψ) :

                The composition of relative morphisms.

                Equations
                Instances For
                  @[simp]
                  theorem SSet.RelativeMorphism.comp_map {X Y Z : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} (f : RelativeMorphism A B φ) {C : Z.Subcomplex} {ψ : B.toSSet C.toSSet} (f' : RelativeMorphism B C ψ) {φψ : A.toSSet C.toSSet} (fac : CategoryTheory.CategoryStruct.comp φ ψ = φψ) :
                  noncomputable def SSet.RelativeMorphism.Homotopy.postcomp {X Y Z : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {f g : RelativeMorphism A B φ} {C : Z.Subcomplex} {ψ : B.toSSet C.toSSet} (h : f.Homotopy g) (f' : RelativeMorphism B C ψ) {φψ : A.toSSet C.toSSet} (fac : CategoryTheory.CategoryStruct.comp φ ψ = φψ) :
                  (f.comp f' fac).Homotopy (g.comp f' fac)

                  The postcomposition of an homotopy with a relative morphism.

                  Equations
                  Instances For
                    @[simp]
                    theorem SSet.RelativeMorphism.Homotopy.postcomp_h {X Y Z : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {f g : RelativeMorphism A B φ} {C : Z.Subcomplex} {ψ : B.toSSet C.toSSet} (h : f.Homotopy g) (f' : RelativeMorphism B C ψ) {φψ : A.toSSet C.toSSet} (fac : CategoryTheory.CategoryStruct.comp φ ψ = φψ) :
                    noncomputable def SSet.RelativeMorphism.Homotopy.precomp {X Y Z : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {C : Z.Subcomplex} {ψ : B.toSSet C.toSSet} {f' g' : RelativeMorphism B C ψ} (h : f'.Homotopy g') (f : RelativeMorphism A B φ) {φψ : A.toSSet C.toSSet} (fac : CategoryTheory.CategoryStruct.comp φ ψ = φψ) :
                    (f.comp f' fac).Homotopy (f.comp g' fac)

                    The precomposition of an homotopy with a relative morphism.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      def SSet.RelativeMorphism.HomotopyClass.postcomp {X Y Z : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {C : Z.Subcomplex} {ψ : B.toSSet C.toSSet} (h : HomotopyClass A B φ) (f' : RelativeMorphism B C ψ) {φψ : A.toSSet C.toSSet} (fac : CategoryTheory.CategoryStruct.comp φ ψ = φψ) :
                      HomotopyClass A C φψ

                      The postcomposition of an homotopy class by a relative morphism.

                      Equations
                      Instances For
                        @[simp]
                        theorem SSet.RelativeMorphism.postcomp_homotopyClass {X Y Z : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {C : Z.Subcomplex} {ψ : B.toSSet C.toSSet} (f : RelativeMorphism A B φ) (f' : RelativeMorphism B C ψ) {φψ : A.toSSet C.toSSet} (fac : CategoryTheory.CategoryStruct.comp φ ψ = φψ) :
                        noncomputable def SSet.RelativeMorphism.HomotopyClass.precomp {X Y Z : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {C : Z.Subcomplex} {ψ : B.toSSet C.toSSet} (h : HomotopyClass B C ψ) (f' : RelativeMorphism A B φ) {φψ : A.toSSet C.toSSet} (fac : CategoryTheory.CategoryStruct.comp φ ψ = φψ) :
                        HomotopyClass A C φψ

                        The precomposition of an homotopy class with a relative morphism.

                        Equations
                        Instances For
                          @[simp]
                          theorem SSet.RelativeMorphism.precomp_homotopyClass {X Y Z : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {C : Z.Subcomplex} {ψ : B.toSSet C.toSSet} (f : RelativeMorphism A B φ) (f' : RelativeMorphism B C ψ) {φψ : A.toSSet C.toSSet} (fac : CategoryTheory.CategoryStruct.comp φ ψ = φψ) :