Documentation

Mathlib.AlgebraicTopology.SimplicialSet.Skeleton

The skeleton of a simplicial set #

In this file, we define the skeleton X.skeleton : ℕ →o X.Subcomplex of a simplicial set X. For any n : ℕ, X.skeleton n is the subcomplex of X that is generated by (non-degenerate) simplices of dimension < n.

If i : X ⟶ Y is a monomorphism, we define skeletonOfMono i : ℕ →o Y.Subcomplex so that skeletonOfMono i n = Subcomplex.range i ⊔ Y.skeleton n.

TODO #

X.skeleton n is the subcomplex of X generated by (non-degenerate) simplices of dimension < n.

Equations
Instances For
    theorem SSet.mem_skeleton (X : SSet) {i : } (x : X.obj (Opposite.op (SimplexCategory.mk i))) {n : } (hi : i < n := by lia) :
    @[simp]
    theorem SSet.skeleton_zero (X : SSet) :
    theorem SSet.iSup_skeleton (X : SSet) :
    ⨆ (n : ), X.skeleton n =
    theorem SSet.skeleton_succ (X : SSet) (n : ) :
    X.skeleton (n + 1) = X.skeleton n⨆ (x : (X.nonDegenerate n)), Subcomplex.ofSimplex x

    The skeleton of a monomorphism i : X ⟶ Y of simplicial sets. It sends n : ℕ to Subcomplex.range i ⊔ Y.skeleton n.

    Equations
    Instances For
      theorem SSet.iSup_skeletonOfMono {X Y : SSet} (i : X Y) [CategoryTheory.Mono i] :
      ⨆ (n : ), (skeletonOfMono i) n =
      theorem SSet.skeletonOfMono_succ {X Y : SSet} (i : X Y) [CategoryTheory.Mono i] (n : ) :
      (skeletonOfMono i) (n + 1) = (skeletonOfMono i) n⨆ (x : (Y.nonDegenerate n)), ⨆ (_ : x(Subcomplex.range i).obj (Opposite.op (SimplexCategory.mk n))), Subcomplex.ofSimplex x