The skeleton of a simplicial set #
In this file, we define the skeleton X.skeleton : ℕ →o X.Subcomplex
of a simplicial set X. For any n : ℕ, X.skeleton n is the
subcomplex of X that is generated by (non-degenerate) simplices
of dimension < n.
If i : X ⟶ Y is a monomorphism, we define
skeletonOfMono i : ℕ →o Y.Subcomplex so that
skeletonOfMono i n = Subcomplex.range i ⊔ Y.skeleton n.
TODO #
- show that
X.skeleton (n + 1)is obtained fromX.skeleton nby attaching∂Δ[n] ⟶ Δ[n]cells (this also holds forskeletonOfMono i) (@joelriou). - show that
(SSet.sk n).obj Xis isomorphic toX.skeleton (n + 1)
X.skeleton n is the subcomplex of X generated by (non-degenerate)
simplices of dimension < n.
Equations
- X.skeleton = { toFun := fun (n : ℕ) => ⨆ (i : Fin n), ⨆ (x : ↑(X.nonDegenerate ↑i)), SSet.Subcomplex.ofSimplex ↑x, monotone' := ⋯ }
Instances For
theorem
SSet.mem_skeleton
(X : SSet)
{i : ℕ}
(x : X.obj (Opposite.op (SimplexCategory.mk i)))
{n : ℕ}
(hi : i < n := by lia)
:
theorem
SSet.ofSimplex_le_skeleton
(X : SSet)
{i : ℕ}
(x : X.obj (Opposite.op (SimplexCategory.mk i)))
{n : ℕ}
(hi : i < n)
:
theorem
SSet.mem_skeleton_obj_iff_of_nonDegenerate
(X : SSet)
{d : ℕ}
(x : ↑(X.nonDegenerate d))
(n : ℕ)
:
The skeleton of a monomorphism i : X ⟶ Y of simplicial sets.
It sends n : ℕ to Subcomplex.range i ⊔ Y.skeleton n.
Equations
- SSet.skeletonOfMono i = { toFun := fun (n : ℕ) => SSet.Subcomplex.range i ⊔ Y.skeleton n, monotone' := ⋯ }
Instances For
@[simp]
theorem
SSet.mem_skeletonOfMono_obj_iff_of_nonDegenerate
{X Y : SSet}
(i : X ⟶ Y)
[CategoryTheory.Mono i]
{d : ℕ}
(x : ↑(Y.nonDegenerate d))
(n : ℕ)
:
↑x ∈ ((skeletonOfMono i) n).obj (Opposite.op (SimplexCategory.mk d)) ↔ ↑x ∈ Set.range (i.app (Opposite.op (SimplexCategory.mk d))) ∨ d < n
theorem
SSet.skeletonOfMono_obj_eq_top
{X Y : SSet}
(i : X ⟶ Y)
[CategoryTheory.Mono i]
{d n : ℕ}
(h : d < n)
:
theorem
SSet.skeletonOfMono_succ
{X Y : SSet}
(i : X ⟶ Y)
[CategoryTheory.Mono i]
(n : ℕ)
:
(skeletonOfMono i) (n + 1) = (skeletonOfMono i) n ⊔
⨆ (x : ↑(Y.nonDegenerate n)),
⨆ (_ : ↑x ∉ (Subcomplex.range i).obj (Opposite.op (SimplexCategory.mk n))), Subcomplex.ofSimplex ↑x