Singular homology #
In this file, we define the singular chain complex and singular homology of a topological space. We also calculate the homology of a totally disconnected space as an example.
def
AlgebraicTopology.SSet.singularChainComplexFunctor
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasCoproducts C]
:
The singular chain complex associated to a simplicial set, with coefficients in X : C
.
One can recover the ordinary singular chain complex when C := Ab
and X := ℤ
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
AlgebraicTopology.singularChainComplexFunctor
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasCoproducts C]
[CategoryTheory.Preadditive C]
:
The singular chain complex functor with coefficients in C
.
Equations
Instances For
def
AlgebraicTopology.singularHomologyFunctor
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasCoproducts C]
[CategoryTheory.Preadditive C]
[CategoryTheory.CategoryWithHomology C]
(n : ℕ)
:
The n
-th singular homology functor with coefficients in C
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
AlgebraicTopology.singularChainComplexFunctorIsoOfTotallyDisconnectedSpace
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasCoproducts C]
[CategoryTheory.Preadditive C]
(R : C)
(X : TopCat)
[TotallyDisconnectedSpace ↑X]
:
((singularChainComplexFunctor C).obj R).obj X ≅ ChainComplex.alternatingConst.obj (∐ fun (x : ↑X) => R)
If X
is totally disconnected,
its singular chain complex is given by R[X] ←0- R[X] ←𝟙- R[X] ←0- R[X] ⋯
,
where R[X]
is the coproduct of copies of R
indexed by elements of X
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
AlgebraicTopology.singularChainComplexFunctor_exactAt_of_totallyDisconnectedSpace
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasCoproducts C]
[CategoryTheory.Preadditive C]
(n : ℕ)
(R : C)
(X : TopCat)
[TotallyDisconnectedSpace ↑X]
[CategoryTheory.Limits.HasZeroObject C]
(hn : n ≠ 0)
:
HomologicalComplex.ExactAt (((singularChainComplexFunctor C).obj R).obj X) n
theorem
AlgebraicTopology.isZero_singularHomologyFunctor_of_totallyDisconnectedSpace
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasCoproducts C]
[CategoryTheory.Preadditive C]
[CategoryTheory.CategoryWithHomology C]
(n : ℕ)
(R : C)
(X : TopCat)
[TotallyDisconnectedSpace ↑X]
(hn : n ≠ 0)
:
CategoryTheory.Limits.IsZero (((singularHomologyFunctor C n).obj R).obj X)
noncomputable def
AlgebraicTopology.singularHomologyFunctorZeroOfTotallyDisconnectedSpace
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasCoproducts C]
[CategoryTheory.Preadditive C]
[CategoryTheory.CategoryWithHomology C]
(R : C)
(X : TopCat)
[TotallyDisconnectedSpace ↑X]
:
The zeroth singular homology of a totally disconnected space is the
free R
-module generated by elements of X
.
Equations
- One or more equations did not get rendered due to their size.