Documentation

Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Order

Facts about star-ordered rings that depend on the continuous functional calculus #

This file contains various basic facts about star-ordered rings (i.e. mainly C⋆-algebras) that depend on the continuous functional calculus.

We also put an order instance on A⁺¹ := Unitization ℂ A when A is a C⋆-algebra via the spectral order.

Main theorems #

Tags #

continuous functional calculus, normal, selfadjoint

theorem cfc_tsub {A : Type u_1} [TopologicalSpace A] [Ring A] [PartialOrder A] [StarRing A] [StarOrderedRing A] [Algebra A] [TopologicalRing A] [ContinuousFunctionalCalculus IsSelfAdjoint] [UniqueContinuousFunctionalCalculus A] [NonnegSpectrumClass A] (f g : NNRealNNReal) (a : A) (hfg : xspectrum NNReal a, g x f x) (ha : 0 a := by cfc_tac) (hf : ContinuousOn f (spectrum NNReal a) := by cfc_cont_tac) (hg : ContinuousOn g (spectrum NNReal a) := by cfc_cont_tac) :
cfc (fun (x : NNReal) => f x - g x) a = cfc f a - cfc g a
theorem cfcₙ_tsub {A : Type u_1} [TopologicalSpace A] [NonUnitalRing A] [PartialOrder A] [StarRing A] [StarOrderedRing A] [Module A] [IsScalarTower A A] [SMulCommClass A A] [TopologicalRing A] [NonUnitalContinuousFunctionalCalculus IsSelfAdjoint] [UniqueNonUnitalContinuousFunctionalCalculus A] [NonnegSpectrumClass A] (f g : NNRealNNReal) (a : A) (hfg : xquasispectrum NNReal a, g x f x) (ha : 0 a := by cfc_tac) (hf : ContinuousOn f (quasispectrum NNReal a) := by cfc_cont_tac) (hf0 : f 0 = 0 := by cfc_zero_tac) (hg : ContinuousOn g (quasispectrum NNReal a) := by cfc_cont_tac) (hg0 : g 0 = 0 := by cfc_zero_tac) :
cfcₙ (fun (x : NNReal) => f x - g x) a = cfcₙ f a - cfcₙ g a
theorem Unitization.inr_le_iff {A : Type u_1} [NonUnitalCStarAlgebra A] [PartialOrder A] [StarOrderedRing A] (a b : A) (ha : IsSelfAdjoint a := by cfc_tac) (hb : IsSelfAdjoint b := by cfc_tac) :
a b a b
@[simp]
theorem Unitization.nnreal_cfcₙ_eq_cfc_inr {A : Type u_1} [NonUnitalCStarAlgebra A] [PartialOrder A] [StarOrderedRing A] (a : A) (f : NNRealNNReal) (hf₀ : f 0 = 0 := by cfc_zero_tac) :
(cfcₙ f a) = cfc f a
theorem cfc_nnreal_le_iff {A : Type u_1} [TopologicalSpace A] [Ring A] [StarRing A] [PartialOrder A] [StarOrderedRing A] [Algebra A] [TopologicalRing A] [NonnegSpectrumClass A] [ContinuousFunctionalCalculus IsSelfAdjoint] [UniqueContinuousFunctionalCalculus A] (f g : NNRealNNReal) (a : A) (ha_spec : SpectrumRestricts a ContinuousMap.realToNNReal) (hf : ContinuousOn f (spectrum NNReal a) := by cfc_cont_tac) (hg : ContinuousOn g (spectrum NNReal a) := by cfc_cont_tac) (ha : 0 a := by cfc_tac) :
cfc f a cfc g a xspectrum NNReal a, f x g x

cfc_le_iff only applies to a scalar ring where R is an actual Ring, and not a Semiring. However, this theorem still holds for ℝ≥0 as long as the algebra A itself is an -algebra.

theorem CFC.exists_pos_algebraMap_le_iff {A : Type u_1} [TopologicalSpace A] [Ring A] [StarRing A] [PartialOrder A] [StarOrderedRing A] [Algebra A] [NonnegSpectrumClass A] [Nontrivial A] [ContinuousFunctionalCalculus IsSelfAdjoint] {a : A} (ha : IsSelfAdjoint a := by cfc_tac) :
(∃ r > 0, (algebraMap A) r a) xspectrum a, 0 < x

In a unital -algebra A with a continuous functional calculus, an element a : A is larger than some algebraMap ℝ A r if and only if every element of the -spectrum is nonnegative.

theorem CStarAlgebra.norm_le_iff_le_algebraMap {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] (a : A) {r : } (hr : 0 r) (ha : 0 a := by cfc_tac) :
theorem CStarAlgebra.nnnorm_le_iff_of_nonneg {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] (a : A) (r : NNReal) (ha : 0 a := by cfc_tac) :
theorem CStarAlgebra.norm_le_one_iff_of_nonneg {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] (a : A) (ha : 0 a := by cfc_tac) :
a 1 a 1
theorem CStarAlgebra.nnnorm_le_one_iff_of_nonneg {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] (a : A) (ha : 0 a := by cfc_tac) :
theorem CStarAlgebra.norm_le_natCast_iff_of_nonneg {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] (a : A) (n : ) (ha : 0 a := by cfc_tac) :
a n a n
theorem CStarAlgebra.nnnorm_le_natCast_iff_of_nonneg {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] (a : A) (n : ) (ha : 0 a := by cfc_tac) :
a‖₊ n a n
theorem CFC.conjugate_rpow_neg_one_half {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a : A} (h₀ : IsUnit a) (ha : 0 a := by cfc_tac) :
a ^ (-(1 / 2)) * a * a ^ (-(1 / 2)) = 1
theorem CStarAlgebra.isUnit_of_le {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a b : A} (h₀ : IsUnit a) (ha : 0 a := by cfc_tac) (hab : a b) :

In a unital C⋆-algebra, if a is nonnegative and invertible, and a ≤ b, then b is invertible.

theorem le_iff_norm_sqrt_mul_rpow {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a b : A} (hbu : IsUnit b) (ha : 0 a) (hb : 0 b) :
a b CFC.sqrt a * b ^ (-(1 / 2)) 1
theorem le_iff_norm_sqrt_mul_sqrt_inv {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a : A} {b : Aˣ} (ha : 0 a) (hb : 0 b) :
theorem CStarAlgebra.inv_le_inv {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a b : Aˣ} (ha : 0 a) (hab : a b) :
b⁻¹ a⁻¹

In a unital C⋆-algebra, if 0 ≤ a ≤ b and a and b are units, then b⁻¹ ≤ a⁻¹.

theorem CStarAlgebra.inv_le_inv_iff {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a b : Aˣ} (ha : 0 a) (hb : 0 b) :
a⁻¹ b⁻¹ b a

In a unital C⋆-algebra, if 0 ≤ a and 0 ≤ b and a and b are units, then a⁻¹ ≤ b⁻¹ if and only if b ≤ a.

theorem CStarAlgebra.inv_le_iff {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a b : Aˣ} (ha : 0 a) (hb : 0 b) :
a⁻¹ b b⁻¹ a
theorem CStarAlgebra.le_inv_iff {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a b : Aˣ} (ha : 0 a) (hb : 0 b) :
a b⁻¹ b a⁻¹
theorem CStarAlgebra.one_le_inv_iff_le_one {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a : Aˣ} (ha : 0 a) :
1 a⁻¹ a 1
theorem CStarAlgebra.inv_le_one_iff_one_le {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a : Aˣ} (ha : 0 a) :
a⁻¹ 1 1 a
theorem CStarAlgebra.inv_le_one {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a : Aˣ} (ha : 1 a) :
a⁻¹ 1
theorem CStarAlgebra.le_one_of_one_le_inv {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a : Aˣ} (ha : 1 a⁻¹) :
a 1
theorem CStarAlgebra.rpow_neg_one_le_rpow_neg_one {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a b : A} (ha : 0 a) (hab : a b) (hau : IsUnit a) :
b ^ (-1) a ^ (-1)
theorem CStarAlgebra.rpow_neg_one_le_one {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a : A} (ha : 1 a) :
a ^ (-1) 1
theorem CStarAlgebra.norm_le_norm_of_nonneg_of_le {A : Type u_1} [NonUnitalCStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a b : A} (ha : 0 a := by cfc_tac) (hab : a b) :
theorem CStarAlgebra.nnnorm_le_nnnorm_of_nonneg_of_le {A : Type u_1} [NonUnitalCStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a b : A} (ha : 0 a := by cfc_tac) (hab : a b) :
theorem CStarAlgebra.conjugate_le_norm_smul {A : Type u_1} [NonUnitalCStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a b : A} (hb : IsSelfAdjoint b := by cfc_tac) :
star a * b * a b (star a * a)
theorem CStarAlgebra.conjugate_le_norm_smul' {A : Type u_1} [NonUnitalCStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a b : A} (hb : IsSelfAdjoint b := by cfc_tac) :
a * b * star a b (a * star a)

The set of nonnegative elements in a C⋆-algebra is closed.

theorem CStarAlgebra.pow_nonneg {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a : A} (ha : 0 a := by cfc_tac) (n : ) :
0 a ^ n
theorem CStarAlgebra.pow_monotone {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a : A} (ha : 1 a) :
Monotone fun (x : ) => a ^ x
theorem CStarAlgebra.pow_antitone {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a : A} (ha₀ : 0 a := by cfc_tac) (ha₁ : a 1) :
Antitone fun (x : ) => a ^ x