Covering maps involving the complex plane #
In this file, we show that Complex.exp is a covering map on {0}ᶜ.
theorem
Complex.isAddQuotientCoveringMap_exp :
IsAddQuotientCoveringMap (fun (z : ℂ) => ⟨exp z, ⋯⟩) ↥(AddSubgroup.zmultiples (2 * ↑Real.pi * I))
exp : ℂ → ℂ \ {0} is a covering map.
theorem
Polynomial.isCoveringMapOn_eval
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
[ProperSpace 𝕜]
(p : Polynomial 𝕜)
: