Documentation

Mathlib.Analysis.NormedSpace.Star.GelfandDuality

Gelfand Duality #

The gelfandTransform is an algebra homomorphism from a topological ๐•œ-algebra A to C(character_space ๐•œ A, ๐•œ). In the case where A is a commutative complex Banach algebra, then the Gelfand transform is actually spectrum-preserving (spectrum.gelfandTransform_eq). Moreover, when A is a commutative Cโ‹†-algebra over โ„‚, then the Gelfand transform is a surjective isometry, and even an equivalence between Cโ‹†-algebras.

Main definitions #

Main statements #

TODO #

Tags #

Gelfand transform, character space, Cโ‹†-algebra

Every maximal ideal in a commutative complex Banach algebra gives rise to a character on that algebra. In particular, the character, which may be identified as an algebra homomorphism due to WeakDual.CharacterSpace.equivAlgHom, is given by the composition of the quotient map and the Gelfand-Mazur isomorphism NormedRing.algEquivComplexOfComplete.

Instances For
    theorem WeakDual.CharacterSpace.exists_apply_eq_zero {A : Type u_1} [NormedCommRing A] [NormedAlgebra โ„‚ A] [CompleteSpace A] {a : A} (ha : ยฌIsUnit a) :
    โˆƒ f, โ†‘f a = 0

    If a : A is not a unit, then some character takes the value zero at a. This is equivalent to gelfandTransform โ„‚ A a takes the value zero at some character.

    The Gelfand transform is spectrum-preserving.

    The Gelfand transform is an isometry when the algebra is a Cโ‹†-algebra over โ„‚.

    The Gelfand transform is bijective when the algebra is a Cโ‹†-algebra over โ„‚.

    @[simp]
    theorem gelfandStarTransform_symm_apply (A : Type u_1) [NormedCommRing A] [NormedAlgebra โ„‚ A] [CompleteSpace A] [StarRing A] [CstarRing A] [StarModule โ„‚ A] :
    โˆ€ (a : C(โ†‘(WeakDual.characterSpace โ„‚ A), โ„‚)), โ†‘(StarAlgEquiv.symm (gelfandStarTransform A)) a = โ†‘(โ†‘(RingEquiv.ofBijective { toAlgHom := { toRingHom := โ†‘(WeakDual.gelfandTransform โ„‚ A), commutes' := (_ : โˆ€ (r : โ„‚), OneHom.toFun (โ†‘โ†‘โ†‘(WeakDual.gelfandTransform โ„‚ A)) (โ†‘(algebraMap โ„‚ A) r) = โ†‘(algebraMap โ„‚ C(โ†‘(WeakDual.characterSpace โ„‚ A), โ„‚)) r) }, map_star' := (_ : โˆ€ (x : A), โ†‘(WeakDual.gelfandTransform โ„‚ A) (star x) = star (โ†‘(WeakDual.gelfandTransform โ„‚ A) x)) } (_ : Function.Bijective โ†‘(WeakDual.gelfandTransform โ„‚ A)))).symm a
    @[simp]
    theorem gelfandStarTransform_apply_apply (A : Type u_1) [NormedCommRing A] [NormedAlgebra โ„‚ A] [CompleteSpace A] [StarRing A] [CstarRing A] [StarModule โ„‚ A] (a : A) (ฯ† : โ†‘(WeakDual.characterSpace โ„‚ A)) :
    โ†‘(โ†‘(gelfandStarTransform A) a) ฯ† = โ†‘ฯ† a

    The Gelfand transform as a StarAlgEquiv between a commutative unital Cโ‹†-algebra over โ„‚ and the continuous functions on its characterSpace.

    Instances For
      @[simp]
      theorem WeakDual.CharacterSpace.compContinuousMap_apply {A : Type u_1} {B : Type u_2} [NormedRing A] [NormedAlgebra โ„‚ A] [CompleteSpace A] [StarRing A] [NormedRing B] [NormedAlgebra โ„‚ B] [CompleteSpace B] [StarRing B] (ฯˆ : A โ†’โ‹†โ‚[โ„‚] B) (ฯ† : โ†‘(WeakDual.characterSpace โ„‚ B)) :
      โ†‘(WeakDual.CharacterSpace.compContinuousMap ฯˆ) ฯ† = โ†‘WeakDual.CharacterSpace.equivAlgHom.symm (AlgHom.comp (โ†‘WeakDual.CharacterSpace.equivAlgHom ฯ†) ฯˆ.toAlgHom)

      The functorial map taking ฯˆ : A โ†’โ‹†โ‚[โ„‚] B to a continuous function characterSpace โ„‚ B โ†’ characterSpace โ„‚ A obtained by pre-composition with ฯˆ.

      Instances For