Documentation

Mathlib.CategoryTheory.Galois.Action

Induced functor to finite Aut F-sets #

Any (fiber) functor F : C ⥤ FintypeCat factors via the forgetful functor from finite Aut F-sets to finite sets. In this file we collect basic properties of the induced functor H : C ⥤ Action FintypeCat (MonCat.of (Aut F)).

See Mathlib.CategoryTheory.Galois.Full for the proof that H is (faithfully) full.

Any (fiber) functor F : C ⥤ FintypeCat naturally factors via the forgetful functor from Action FintypeCat (MonCat.of (Aut F)) to FintypeCat.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.PreGaloisCategory.functorToAction_map {C : Type u} [Category.{v, u} C] (F : Functor C FintypeCat) {X Y : C} (f : X Y) :
    ((functorToAction F).map f).hom = F.map f