Induced functor to finite Aut F
-sets #
Any (fiber) functor F : C ⥤ FintypeCat
factors via the forgetful functor
from finite Aut F
-sets to finite sets. In this file we collect basic properties
of the induced functor H : C ⥤ Action FintypeCat (MonCat.of (Aut F))
.
See Mathlib.CategoryTheory.Galois.Full
for the proof that H
is (faithfully) full.
def
CategoryTheory.PreGaloisCategory.functorToAction
{C : Type u}
[Category.{v, u} C]
(F : Functor C FintypeCat)
:
Functor C (Action FintypeCat (MonCat.of (Aut F)))
Any (fiber) functor F : C ⥤ FintypeCat
naturally factors via
the forgetful functor from Action FintypeCat (MonCat.of (Aut F))
to FintypeCat
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.PreGaloisCategory.functorToAction_comp_forget₂_eq
{C : Type u}
[Category.{v, u} C]
(F : Functor C FintypeCat)
:
(functorToAction F).comp (forget₂ (Action FintypeCat (MonCat.of (Aut F))) FintypeCat) = F
@[simp]
theorem
CategoryTheory.PreGaloisCategory.functorToAction_map
{C : Type u}
[Category.{v, u} C]
(F : Functor C FintypeCat)
{X Y : C}
(f : X ⟶ Y)
:
((functorToAction F).map f).hom = F.map f
instance
CategoryTheory.PreGaloisCategory.instMulActionAutαFintypeVFintypeCatObjActionOfFunctorFunctorToAction
{C : Type u}
[Category.{v, u} C]
(F : Functor C FintypeCat)
(X : C)
:
MulAction (Aut X) ↑((functorToAction F).obj X).V
instance
CategoryTheory.PreGaloisCategory.instIsPretransitiveAutαFintypeVFintypeCatObjActionOfFunctorFunctorToActionOfIsGalois
{C : Type u}
[Category.{v, u} C]
(F : Functor C FintypeCat)
[GaloisCategory C]
[FiberFunctor F]
(X : C)
[IsGalois X]
:
MulAction.IsPretransitive (Aut X) ↑((functorToAction F).obj X).V
instance
CategoryTheory.PreGaloisCategory.instFaithfulActionFintypeCatOfAutFunctorFunctorToAction
{C : Type u}
[Category.{v, u} C]
(F : Functor C FintypeCat)
[GaloisCategory C]
[FiberFunctor F]
:
(functorToAction F).Faithful
instance
CategoryTheory.PreGaloisCategory.instPreservesMonomorphismsActionFintypeCatOfAutFunctorFunctorToAction
{C : Type u}
[Category.{v, u} C]
(F : Functor C FintypeCat)
[GaloisCategory C]
[FiberFunctor F]
:
(functorToAction F).PreservesMonomorphisms
instance
CategoryTheory.PreGaloisCategory.instReflectsMonomorphismsActionFintypeCatOfAutFunctorFunctorToAction
{C : Type u}
[Category.{v, u} C]
(F : Functor C FintypeCat)
[GaloisCategory C]
[FiberFunctor F]
:
(functorToAction F).ReflectsMonomorphisms
instance
CategoryTheory.PreGaloisCategory.instReflectsIsomorphismsActionFintypeCatOfAutFunctorFunctorToAction
{C : Type u}
[Category.{v, u} C]
(F : Functor C FintypeCat)
[GaloisCategory C]
[FiberFunctor F]
:
(functorToAction F).ReflectsIsomorphisms
instance
CategoryTheory.PreGaloisCategory.instPreservesColimitsOfShapeActionFintypeCatOfAutFunctorSingleObjFunctorToActionOfFinite
{C : Type u}
[Category.{v, u} C]
(F : Functor C FintypeCat)
[GaloisCategory C]
[FiberFunctor F]
(G : Type u_1)
[Group G]
[Finite G]
: