Documentation

Mathlib.CategoryTheory.Galois.GaloisObjects

Galois objects in Galois categories #

We define when a connected object of a Galois category C is Galois in a fiber functor independent way and show equivalent characterisations.

Main definitions #

Main results #

A connected object X of C is Galois if the quotient X / Aut X is terminal.

Instances

    The natural action of Aut X on F.obj X.

    Equations

    For a connected object X of C, the quotient X / Aut X is terminal if and only if the quotient F.obj X / Aut X has exactly one element.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      Given a fiber functor F and a connected object X of C. Then X is Galois if and only if the natural action of Aut X on F.obj X is transitive.

      If X is Galois, then the action of Aut X on F.obj X is transitive for every fiber functor F.

      noncomputable def CategoryTheory.PreGaloisCategory.evaluationEquivOfIsGalois {C : Type u₁} [Category.{u₂, u₁} C] [GaloisCategory C] (F : Functor C FintypeCat) [FiberFunctor F] (A : C) [IsGalois A] (a : (F.obj A)) :
      Aut A (F.obj A)

      For Galois A and a point a of the fiber of A, the evaluation at A as an equivalence.

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.PreGaloisCategory.evaluationEquivOfIsGalois_apply {C : Type u₁} [Category.{u₂, u₁} C] [GaloisCategory C] (F : Functor C FintypeCat) [FiberFunctor F] (A : C) [IsGalois A] (a : (F.obj A)) (φ : Aut A) :
        (evaluationEquivOfIsGalois F A a) φ = F.map φ.hom a
        @[simp]
        theorem CategoryTheory.PreGaloisCategory.exists_autMap {C : Type u₁} [Category.{u₂, u₁} C] [GaloisCategory C] {A B : C} (f : A B) [IsConnected A] [IsGalois B] (σ : Aut A) :
        ∃! τ : Aut B, CategoryStruct.comp f τ.hom = CategoryStruct.comp σ.hom f

        For a morphism from a connected object A to a Galois object B and an automorphism of A, there exists a unique automorphism of B making the canonical diagram commute.

        noncomputable def CategoryTheory.PreGaloisCategory.autMap {C : Type u₁} [Category.{u₂, u₁} C] [GaloisCategory C] {A B : C} [IsConnected A] [IsGalois B] (f : A B) (σ : Aut A) :
        Aut B

        A morphism from a connected object to a Galois object induces a map on automorphism groups. This is a group homomorphism (see autMapHom).

        Equations
        Instances For
          @[simp]
          @[simp]
          theorem CategoryTheory.PreGaloisCategory.comp_autMap_apply {C : Type u₁} [Category.{u₂, u₁} C] [GaloisCategory C] (F : Functor C FintypeCat) {A B : C} [IsConnected A] [IsGalois B] (f : A B) (σ : Aut A) (a : (F.obj A)) :
          F.map (autMap f σ).hom (F.map f a) = F.map f (F.map σ.hom a)
          theorem CategoryTheory.PreGaloisCategory.autMap_unique {C : Type u₁} [Category.{u₂, u₁} C] [GaloisCategory C] {A B : C} [IsConnected A] [IsGalois B] (f : A B) (σ : Aut A) (τ : Aut B) (h : CategoryStruct.comp f τ.hom = CategoryStruct.comp σ.hom f) :
          autMap f σ = τ

          autMap is uniquely characterized by making the canonical diagram commute.

          autMap is surjective, if the source is also Galois.

          @[simp]
          theorem CategoryTheory.PreGaloisCategory.autMap_apply_mul {C : Type u₁} [Category.{u₂, u₁} C] [GaloisCategory C] {A B : C} [IsConnected A] [IsGalois B] (f : A B) (σ τ : Aut A) :
          autMap f (σ * τ) = autMap f σ * autMap f τ
          @[simp]
          theorem CategoryTheory.PreGaloisCategory.autMapHom_apply {C : Type u₁} [Category.{u₂, u₁} C] [GaloisCategory C] {A B : C} [IsConnected A] [IsGalois B] (f : A B) (σ : Aut A) :
          (autMapHom f) σ = autMap f σ