Documentation

Mathlib.LinearAlgebra.Matrix.Ideal

Ideals in a matrix ring #

This file defines left (resp. two-sided) ideals in a matrix semiring (resp. ring) over left (resp. two-sided) ideals in the base semiring (resp. ring). We also characterize Jacobson radicals of ideals in such rings.

Main results #

Left ideals in a matrix semiring #

def Ideal.matricesOver {R : Type u_1} [Semiring R] (n : Type u_2) [Fintype n] [DecidableEq n] (I : Ideal R) :
Ideal (Matrix n n R)

The left ideal of matrices with entries in I ≤ R.

Equations
  • Ideal.matricesOver n I = { carrier := {M : Matrix n n R | ∀ (i j : n), M i j I}, add_mem' := , zero_mem' := , smul_mem' := }
Instances For
    @[simp]
    theorem Ideal.mem_matricesOver {R : Type u_1} [Semiring R] (n : Type u_2) [Fintype n] [DecidableEq n] (I : Ideal R) (M : Matrix n n R) :
    M Ideal.matricesOver n I ∀ (i j : n), M i j I
    @[simp]
    @[simp]

    Jacobson radicals of left ideals in a matrix ring #

    theorem Ideal.stdBasisMatrix_mem_jacobson_matricesOver {R : Type u_1} [Ring R] {n : Type u_2} [Fintype n] [DecidableEq n] (I : Ideal R) (x : R) :
    x I.jacobson∀ (i j : n), Matrix.stdBasisMatrix i j x (Ideal.matricesOver n I).jacobson

    A standard basis matrix is in $J(Mₙ(I))$ as long as its one possibly non-zero entry is in $J(I)$.

    theorem Ideal.matricesOver_jacobson_le {R : Type u_1} [Ring R] {n : Type u_2} [Fintype n] [DecidableEq n] (I : Ideal R) :
    Ideal.matricesOver n I.jacobson (Ideal.matricesOver n I).jacobson

    For any left ideal $I ≤ R$, we have $Mₙ(J(I)) ≤ J(Mₙ(I))$.

    Two-sided ideals in a matrix ring #

    def TwoSidedIdeal.matricesOver {R : Type u_1} [Ring R] (n : Type u_2) [Fintype n] (I : TwoSidedIdeal R) :

    The two-sided ideal of matrices with entries in I ≤ R.

    Equations
    Instances For
      @[simp]
      theorem TwoSidedIdeal.mem_matricesOver {R : Type u_1} [Ring R] (n : Type u_2) [Fintype n] (I : TwoSidedIdeal R) (M : Matrix n n R) :
      M TwoSidedIdeal.matricesOver n I ∀ (i j : n), M i j I
      theorem TwoSidedIdeal.asIdeal_matricesOver {R : Type u_1} [Ring R] (n : Type u_2) [Fintype n] [DecidableEq n] (I : TwoSidedIdeal R) :
      TwoSidedIdeal.asIdeal (TwoSidedIdeal.matricesOver n I) = Ideal.matricesOver n (TwoSidedIdeal.asIdeal I)
      def TwoSidedIdeal.equivMatricesOver {R : Type u_1} [Ring R] {n : Type u_3} [Fintype n] (i j : n) :

      Two-sided ideals in $R$ correspond bijectively to those in $Mₙ(R)$. Given an ideal $I ≤ R$, we send it to $Mₙ(I)$. Given an ideal $J ≤ Mₙ(R)$, we send it to $\{Nᵢⱼ ∣ ∃ N ∈ J\}$.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem TwoSidedIdeal.equivMatricesOver_symm_apply {R : Type u_1} [Ring R] {n : Type u_3} [Fintype n] (i j : n) (J : TwoSidedIdeal (Matrix n n R)) :
        (TwoSidedIdeal.equivMatricesOver i j).symm J = TwoSidedIdeal.mk' {x : R | NJ, N i j = x}
        def TwoSidedIdeal.orderIsoMatricesOver {R : Type u_1} [Ring R] {n : Type u_3} [Fintype n] (i j : n) :

        Two-sided ideals in $R$ are order-isomorphic with those in $Mₙ(R)$. See also equivMatricesOver.

        Equations
        Instances For
          @[simp]
          theorem TwoSidedIdeal.orderIsoMatricesOver_symm_apply_ringCon_r {R : Type u_1} [Ring R] {n : Type u_3} [Fintype n] (i j : n) (J : TwoSidedIdeal (Matrix n n R)) (x y : R) :
          ((RelIso.symm (TwoSidedIdeal.orderIsoMatricesOver i j)) J).ringCon.toSetoid x y = NJ, N i j = x - y
          @[simp]
          theorem TwoSidedIdeal.orderIsoMatricesOver_apply_ringCon_r {R : Type u_1} [Ring R] {n : Type u_3} [Fintype n] (i j : n) (I : TwoSidedIdeal R) (x y : Matrix n n R) :
          ((TwoSidedIdeal.orderIsoMatricesOver i j) I).ringCon.toSetoid x y = ∀ (i j : n), x i j - y i j I

          Jacobson radicals of two-sided ideals in a matrix ring #

          For any two-sided ideal $I ≤ R$, we have $J(Mₙ(I)) = Mₙ(J(I))$.