Documentation

Mathlib.LinearAlgebra.Matrix.Ideal

Ideals in a matrix ring #

This file defines left (resp. two-sided) ideals in a matrix semiring (resp. ring) over left (resp. two-sided) ideals in the base semiring (resp. ring).

Main results #

Left ideals in a matrix ring #

def Ideal.matricesOver {R : Type u_1} [Semiring R] (n : Type u_2) [Fintype n] [DecidableEq n] (I : Ideal R) :
Ideal (Matrix n n R)

The left ideal of matrices with entries in I ≤ R.

Equations
  • Ideal.matricesOver n I = { carrier := {M : Matrix n n R | ∀ (i j : n), M i j I}, add_mem' := , zero_mem' := , smul_mem' := }
Instances For
    @[simp]
    theorem Ideal.mem_matricesOver {R : Type u_1} [Semiring R] (n : Type u_2) [Fintype n] [DecidableEq n] (I : Ideal R) (M : Matrix n n R) :
    M Ideal.matricesOver n I ∀ (i j : n), M i j I
    @[simp]
    @[simp]

    Two-sided ideals in a matrix ring #

    def TwoSidedIdeal.matricesOver {R : Type u_1} [Ring R] (n : Type u_2) [Fintype n] (I : TwoSidedIdeal R) :

    The two-sided ideal of matrices with entries in I ≤ R.

    Equations
    Instances For
      @[simp]
      theorem TwoSidedIdeal.mem_matricesOver {R : Type u_1} [Ring R] (n : Type u_2) [Fintype n] (I : TwoSidedIdeal R) (M : Matrix n n R) :
      M TwoSidedIdeal.matricesOver n I ∀ (i j : n), M i j I
      theorem TwoSidedIdeal.asIdeal_matricesOver {R : Type u_1} [Ring R] (n : Type u_2) [Fintype n] [DecidableEq n] (I : TwoSidedIdeal R) :
      TwoSidedIdeal.asIdeal (TwoSidedIdeal.matricesOver n I) = Ideal.matricesOver n (TwoSidedIdeal.asIdeal I)
      @[simp]
      theorem TwoSidedIdeal.equivMatricesOver_symm_apply {R : Type u_1} [Ring R] {n : Type u_3} [Fintype n] [DecidableEq n] (i : n) (j : n) (J : TwoSidedIdeal (Matrix n n R)) :
      (TwoSidedIdeal.equivMatricesOver i j).symm J = TwoSidedIdeal.mk' {x : R | NJ, N i j = x}
      def TwoSidedIdeal.equivMatricesOver {R : Type u_1} [Ring R] {n : Type u_3} [Fintype n] [DecidableEq n] (i : n) (j : n) :

      Two-sided ideals in $R$ correspond bijectively to those in $Mₙ(R)$. Given an ideal $I ≤ R$, we send it to $Mₙ(I)$. Given an ideal $J ≤ Mₙ(R)$, we send it to $\{Nᵢⱼ ∣ ∃ N ∈ J\}$.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem TwoSidedIdeal.orderIsoMatricesOver_symm_apply_ringCon_r {R : Type u_1} [Ring R] {n : Type u_3} [Fintype n] [DecidableEq n] (i : n) (j : n) (J : TwoSidedIdeal (Matrix n n R)) (x : R) (y : R) :
        ((RelIso.symm (TwoSidedIdeal.orderIsoMatricesOver i j)) J).ringCon.toSetoid x y = NJ, N i j = x - y
        @[simp]
        theorem TwoSidedIdeal.orderIsoMatricesOver_apply_ringCon_r {R : Type u_1} [Ring R] {n : Type u_3} [Fintype n] [DecidableEq n] (i : n) (j : n) (I : TwoSidedIdeal R) (x : Matrix n n R) (y : Matrix n n R) :
        ((TwoSidedIdeal.orderIsoMatricesOver i j) I).ringCon.toSetoid x y = ∀ (i j : n), x i j - y i j I
        def TwoSidedIdeal.orderIsoMatricesOver {R : Type u_1} [Ring R] {n : Type u_3} [Fintype n] [DecidableEq n] (i : n) (j : n) :

        Two-sided ideals in $R$ are order-isomorphic with those in $Mₙ(R)$. See also equivMatricesOver.

        Equations
        Instances For