Documentation

Mathlib.RingTheory.TwoSidedIdeal.Operations

Operations on two-sided ideals #

This file defines operations on two-sided ideals of a ring R.

Main definitions and results #

@[reducible, inline]

The smallest two-sided ideal containing a set.

Equations
Instances For
    theorem TwoSidedIdeal.mem_span_iff {R : Type u_1} [NonUnitalNonAssocRing R] {s : Set R} {x : R} :
    x TwoSidedIdeal.span s ∀ (I : TwoSidedIdeal R), s Ix I
    def TwoSidedIdeal.map {R : Type u_1} {S : Type u_2} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] {F : Type u_3} [FunLike F R S] (f : F) (I : TwoSidedIdeal R) :

    Pushout of a two-sided ideal. Defined as the span of the image of a two-sided ideal under a ring homomorphism.

    Equations
    Instances For
      theorem TwoSidedIdeal.map_mono {R : Type u_1} {S : Type u_2} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] {F : Type u_3} [FunLike F R S] (f : F) {I J : TwoSidedIdeal R} (h : I J) :
      def TwoSidedIdeal.comap {R : Type u_1} {S : Type u_2} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] {F : Type u_3} [FunLike F R S] (f : F) [NonUnitalRingHomClass F R S] (I : TwoSidedIdeal S) :

      Preimage of a two-sided ideal, as a two-sided ideal.

      Equations
      Instances For
        theorem TwoSidedIdeal.mem_comap {R : Type u_1} {S : Type u_2} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] {F : Type u_3} [FunLike F R S] (f : F) [NonUnitalRingHomClass F R S] {I : TwoSidedIdeal S} {x : R} :
        theorem TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure_absorbing {R : Type u_1} [NonUnitalRing R] {s : Set R} (h_left : ∀ (x y : R), y sx * y s) (h_right : ∀ (y x : R), y sy * x s) {z : R} :

        If s : Set R is absorbing under multiplication, then its TwoSidedIdeal.span coincides with its AddSubgroup.closure, as sets.

        theorem TwoSidedIdeal.set_mul_subset {R : Type u_1} [NonUnitalRing R] {s : Set R} {I : TwoSidedIdeal R} (h : s I) (t : Set R) :
        t * s I
        theorem TwoSidedIdeal.subset_mul_set {R : Type u_1} [NonUnitalRing R] {s : Set R} {I : TwoSidedIdeal R} (h : s I) (t : Set R) :
        s * t I
        theorem TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure_nonunital {R : Type u_1} [NonUnitalRing R] {s : Set R} {z : R} :
        z TwoSidedIdeal.span s z AddSubgroup.closure (s s * Set.univ Set.univ * s Set.univ * s * Set.univ)
        theorem TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure {R : Type u_1} [Ring R] {s : Set R} {z : R} :
        z TwoSidedIdeal.span s z AddSubgroup.closure (Set.univ * s * Set.univ)
        instance TwoSidedIdeal.instSMulSubtypeMem {R : Type u_1} [Ring R] (I : TwoSidedIdeal R) :
        SMul R I
        Equations
        • I.instSMulSubtypeMem = { smul := fun (r : R) (x : I) => r x, }
        Equations
        • I.instSMulMulOppositeSubtypeMem = { smul := fun (r : Rᵐᵒᵖ) (x : I) => r x, }
        instance TwoSidedIdeal.leftModule {R : Type u_1} [Ring R] (I : TwoSidedIdeal R) :
        Module R I
        Equations
        @[simp]
        theorem TwoSidedIdeal.coe_smul {R : Type u_1} [Ring R] (I : TwoSidedIdeal R) {r : R} {x : I} :
        r x = r * x
        instance TwoSidedIdeal.rightModule {R : Type u_1} [Ring R] (I : TwoSidedIdeal R) :
        Equations
        @[simp]
        theorem TwoSidedIdeal.coe_mop_smul {R : Type u_1} [Ring R] (I : TwoSidedIdeal R) {r : Rᵐᵒᵖ} {x : I} :
        r x = x * MulOpposite.unop r
        def TwoSidedIdeal.subtype {R : Type u_1} [Ring R] (I : TwoSidedIdeal R) :
        I →ₗ[R] R

        For any I : RingCon R, when we view it as an ideal, I.subtype is the injective R-linear map I → R.

        Equations
        • I.subtype = { toFun := fun (x : I) => x, map_add' := , map_smul' := }
        Instances For
          @[simp]
          theorem TwoSidedIdeal.subtype_apply {R : Type u_1} [Ring R] (I : TwoSidedIdeal R) (x : I) :
          I.subtype x = x

          For any RingCon R, when we view it as an ideal in Rᵒᵖ, subtype is the injective Rᵐᵒᵖ-linear map I → Rᵐᵒᵖ.

          Equations
          • I.subtypeMop = { toFun := fun (x : I) => MulOpposite.op x, map_add' := , map_smul' := }
          Instances For
            @[simp]
            theorem TwoSidedIdeal.subtypeMop_apply {R : Type u_1} [Ring R] (I : TwoSidedIdeal R) (x : I) :
            I.subtypeMop x = MulOpposite.op x

            Given an ideal I, span I is the smallest two-sided ideal containing I.

            Equations
            Instances For
              theorem TwoSidedIdeal.mem_fromIdeal {R : Type u_1} [Ring R] {I : Ideal R} {x : R} :
              x TwoSidedIdeal.fromIdeal I x TwoSidedIdeal.span I

              Every two-sided ideal is also a left ideal.

              Equations
              • TwoSidedIdeal.asIdeal = { toFun := fun (I : TwoSidedIdeal R) => { carrier := I, add_mem' := , zero_mem' := , smul_mem' := }, monotone' := }
              Instances For
                @[simp]
                theorem TwoSidedIdeal.mem_asIdeal {R : Type u_1} [Ring R] {I : TwoSidedIdeal R} {x : R} :
                x TwoSidedIdeal.asIdeal I x I
                theorem TwoSidedIdeal.gc {R : Type u_1} [Ring R] :
                GaloisConnection TwoSidedIdeal.fromIdeal TwoSidedIdeal.asIdeal
                @[simp]
                theorem TwoSidedIdeal.coe_asIdeal {R : Type u_1} [Ring R] {I : TwoSidedIdeal R} :
                (TwoSidedIdeal.asIdeal I) = I

                Every two-sided ideal is also a right ideal.

                Equations
                • TwoSidedIdeal.asIdealOpposite = { toFun := fun (I : TwoSidedIdeal R) => TwoSidedIdeal.asIdeal { ringCon := I.ringCon.op }, monotone' := }
                Instances For
                  theorem TwoSidedIdeal.mem_asIdealOpposite {R : Type u_1} [Ring R] {I : TwoSidedIdeal R} {x : Rᵐᵒᵖ} :
                  x TwoSidedIdeal.asIdealOpposite I MulOpposite.unop x I

                  When the ring is commutative, two-sided ideals are exactly the same as left ideals.

                  Equations
                  • TwoSidedIdeal.orderIsoIdeal = { toFun := TwoSidedIdeal.asIdeal, invFun := TwoSidedIdeal.fromIdeal, left_inv := , right_inv := , map_rel_iff' := }
                  Instances For
                    def Ideal.toTwoSided {R : Type u_1} [Ring R] (I : Ideal R) (mul_mem_right : ∀ {x y : R}, x Ix * y I) :

                    Bundle an Ideal that is already two-sided as a TwoSidedIdeal.

                    Equations
                    Instances For
                      @[simp]
                      theorem Ideal.mem_toTwoSided {R : Type u_1} [Ring R] {I : Ideal R} {h : ∀ {x y : R}, x Ix * y I} {x : R} :
                      x I.toTwoSided h x I
                      @[simp]
                      theorem Ideal.coe_toTwoSided {R : Type u_1} [Ring R] (I : Ideal R) (h : ∀ {x y : R}, x Ix * y I) :
                      (I.toTwoSided h) = I
                      @[simp]
                      theorem Ideal.toTwoSided_asIdeal {R : Type u_1} [Ring R] (I : TwoSidedIdeal R) (h : ∀ {x y : R}, x TwoSidedIdeal.asIdeal Ix * y TwoSidedIdeal.asIdeal I) :
                      (TwoSidedIdeal.asIdeal I).toTwoSided h = I
                      @[simp]
                      theorem Ideal.asIdeal_toTwoSided {R : Type u_1} [Ring R] (I : Ideal R) (h : ∀ {x y : R}, x Ix * y I) :
                      TwoSidedIdeal.asIdeal (I.toTwoSided h) = I
                      instance Ideal.instCanLiftTwoSidedIdealCoeOrderHomAsIdealForallForallForallMemHMul {R : Type u_1} [Ring R] :
                      CanLift (Ideal R) (TwoSidedIdeal R) TwoSidedIdeal.asIdeal fun (I : Ideal R) => ∀ {x y : R}, x Ix * y I