Documentation

Mathlib.LinearAlgebra.TensorProduct.Submodule

Some results on tensor product of submodules #

Linear maps induced by multiplication for submodules #

Let R be a commutative ring, S be an R-algebra (not necessarily commutative). Let M and N be R-submodules in S (Submodule R S). We define some linear maps induced by the multiplication in S (see also LinearMap.mul'), which are mainly used in the definition of linearly disjointness (Submodule.LinearDisjoint).

There are also Submodule.mulLeftMap and Submodule.mulRightMap, defined in earlier files.

def Submodule.mulMap {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (M : Submodule R S) (N : Submodule R S) :
TensorProduct R M N →ₗ[R] S

If M and N are submodules in an algebra S over R, there is the natural R-linear map M ⊗[R] N →ₗ[R] S induced by multiplication in S.

Equations
Instances For
    @[simp]
    theorem Submodule.mulMap_tmul {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (M : Submodule R S) (N : Submodule R S) (m : M) (n : N) :
    (M.mulMap N) (m ⊗ₜ[R] n) = m * n
    theorem Submodule.mulMap_op {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (M : Submodule R S) (N : Submodule R S) :
    (Submodule.equivOpposite.symm (MulOpposite.op M)).mulMap (Submodule.equivOpposite.symm (MulOpposite.op N)) = (MulOpposite.opLinearEquiv R) ∘ₗ N.mulMap M ∘ₗ (TensorProduct.congr ((MulOpposite.opLinearEquiv R).symm.ofSubmodule' M) ((MulOpposite.opLinearEquiv R).symm.ofSubmodule' N) ≪≫ₗ TensorProduct.comm R M N)
    theorem Submodule.mulMap_comm_of_commute {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (M : Submodule R S) (N : Submodule R S) (hc : ∀ (m : M) (n : N), Commute m n) :
    N.mulMap M = M.mulMap N ∘ₗ (TensorProduct.comm R N M)
    theorem Submodule.mulMap_comp_rTensor {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {M : Submodule R S} (N : Submodule R S) {M' : Submodule R S} (hM : M' M) :
    M.mulMap N ∘ₗ LinearMap.rTensor (↥N) (Submodule.inclusion hM) = M'.mulMap N
    theorem Submodule.mulMap_comp_lTensor {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (M : Submodule R S) {N : Submodule R S} {N' : Submodule R S} (hN : N' N) :
    M.mulMap N ∘ₗ LinearMap.lTensor (↥M) (Submodule.inclusion hN) = M.mulMap N'
    theorem Submodule.mulMap_comp_map_inclusion {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {M : Submodule R S} {N : Submodule R S} {M' : Submodule R S} {N' : Submodule R S} (hM : M' M) (hN : N' N) :
    M.mulMap N ∘ₗ TensorProduct.map (Submodule.inclusion hM) (Submodule.inclusion hN) = M'.mulMap N'
    theorem Submodule.mulMap_eq_mul'_comp_mapIncl {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (M : Submodule R S) (N : Submodule R S) :
    M.mulMap N = LinearMap.mul' R S ∘ₗ TensorProduct.mapIncl M N
    theorem Submodule.mulMap_range {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (M : Submodule R S) (N : Submodule R S) :
    LinearMap.range (M.mulMap N) = M * N
    def Submodule.mulMap' {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (M : Submodule R S) (N : Submodule R S) :
    TensorProduct R M N →ₗ[R] (M * N)

    If M and N are submodules in an algebra S over R, there is the natural R-linear map M ⊗[R] N →ₗ[R] M * N induced by multiplication in S, which is surjective (Submodule.mulMap'_surjective).

    Equations
    Instances For
      @[simp]
      theorem Submodule.val_mulMap'_tmul {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {M : Submodule R S} {N : Submodule R S} (m : M) (n : N) :
      ((M.mulMap' N) (m ⊗ₜ[R] n)) = m * n
      theorem Submodule.mulMap'_surjective {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (M : Submodule R S) (N : Submodule R S) :
      Function.Surjective (M.mulMap' N)
      def Submodule.lTensorOne' {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (N : Submodule R S) :
      TensorProduct R N →ₗ[R] N

      If N is a submodule in an algebra S over R, there is the natural R-linear map i(R) ⊗[R] N →ₗ[R] N induced by multiplication in S, here i : R → S is the structure map. This is promoted to an isomorphism of R-modules as Submodule.lTensorOne. Use that instead.

      Equations
      Instances For
        @[simp]
        theorem Submodule.lTensorOne'_tmul {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {N : Submodule R S} (y : R) (n : N) :
        N.lTensorOne' ((algebraMap R ) y ⊗ₜ[R] n) = y n
        @[simp]
        theorem Submodule.lTensorOne'_one_tmul {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {N : Submodule R S} (n : N) :
        N.lTensorOne' (1 ⊗ₜ[R] n) = n
        def Submodule.lTensorOne {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (N : Submodule R S) :
        TensorProduct R N ≃ₗ[R] N

        If N is a submodule in an algebra S over R, there is the natural isomorphism of R-modules between i(R) ⊗[R] N and N induced by multiplication in S, here i : R → S is the structure map. This generalizes TensorProduct.lid as i(R) is not necessarily isomorphic to R.

        Equations
        Instances For
          @[simp]
          theorem Submodule.lTensorOne_tmul {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {N : Submodule R S} (y : R) (n : N) :
          N.lTensorOne ((algebraMap R ) y ⊗ₜ[R] n) = y n
          @[simp]
          theorem Submodule.lTensorOne_one_tmul {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {N : Submodule R S} (n : N) :
          N.lTensorOne (1 ⊗ₜ[R] n) = n
          @[simp]
          theorem Submodule.lTensorOne_symm_apply {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {N : Submodule R S} (n : N) :
          N.lTensorOne.symm n = 1 ⊗ₜ[R] n
          theorem Submodule.mulMap_one_left_eq {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (N : Submodule R S) :
          Submodule.mulMap 1 N = N.subtype ∘ₗ N.lTensorOne
          def Submodule.rTensorOne' {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (M : Submodule R S) :
          TensorProduct R M →ₗ[R] M

          If M is a submodule in an algebra S over R, there is the natural R-linear map M ⊗[R] i(R) →ₗ[R] M induced by multiplication in S, here i : R → S is the structure map. This is promoted to an isomorphism of R-modules as Submodule.rTensorOne. Use that instead.

          Equations
          Instances For
            @[simp]
            theorem Submodule.rTensorOne'_tmul {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {M : Submodule R S} (y : R) (m : M) :
            M.rTensorOne' (m ⊗ₜ[R] (algebraMap R ) y) = y m
            @[simp]
            theorem Submodule.rTensorOne'_tmul_one {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {M : Submodule R S} (m : M) :
            M.rTensorOne' (m ⊗ₜ[R] 1) = m
            def Submodule.rTensorOne {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (M : Submodule R S) :
            TensorProduct R M ≃ₗ[R] M

            If M is a submodule in an algebra S over R, there is the natural isomorphism of R-modules between M ⊗[R] i(R) and M induced by multiplication in S, here i : R → S is the structure map. This generalizes TensorProduct.rid as i(R) is not necessarily isomorphic to R.

            Equations
            Instances For
              @[simp]
              theorem Submodule.rTensorOne_tmul {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {M : Submodule R S} (y : R) (m : M) :
              M.rTensorOne (m ⊗ₜ[R] (algebraMap R ) y) = y m
              @[simp]
              theorem Submodule.rTensorOne_tmul_one {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {M : Submodule R S} (m : M) :
              M.rTensorOne (m ⊗ₜ[R] 1) = m
              @[simp]
              theorem Submodule.rTensorOne_symm_apply {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {M : Submodule R S} (m : M) :
              M.rTensorOne.symm m = m ⊗ₜ[R] 1
              theorem Submodule.mulMap_one_right_eq {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (M : Submodule R S) :
              M.mulMap 1 = M.subtype ∘ₗ M.rTensorOne
              @[simp]
              theorem Submodule.comm_trans_lTensorOne {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (M : Submodule R S) :
              TensorProduct.comm R M ≪≫ₗ M.lTensorOne = M.rTensorOne
              @[simp]
              theorem Submodule.comm_trans_rTensorOne {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (M : Submodule R S) :
              TensorProduct.comm R M ≪≫ₗ M.rTensorOne = M.lTensorOne
              theorem Submodule.mulLeftMap_eq_mulMap_comp {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {M : Submodule R S} (N : Submodule R S) {ι : Type u_1} [DecidableEq ι] (m : ιM) :
              Submodule.mulLeftMap N m = M.mulMap N ∘ₗ LinearMap.rTensor (↥N) (Finsupp.linearCombination R m) ∘ₗ (TensorProduct.finsuppScalarLeft R (↥N) ι).symm
              theorem Submodule.mulRightMap_eq_mulMap_comp {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (M : Submodule R S) {N : Submodule R S} {ι : Type u_1} [DecidableEq ι] (n : ιN) :
              M.mulRightMap n = M.mulMap N ∘ₗ LinearMap.lTensor (↥M) (Finsupp.linearCombination R n) ∘ₗ (TensorProduct.finsuppScalarRight R (↥M) ι).symm
              theorem Submodule.mulMap_comm {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] [Algebra R S] (M : Submodule R S) (N : Submodule R S) :
              N.mulMap M = M.mulMap N ∘ₗ (TensorProduct.comm R N M)