Documentation

Mathlib.NumberTheory.ModularForms.EisensteinSeries.QExpansion

Einstein series q-expansions #

We give some identities for q-expansions of Eisenstein series that will be used in describing their q-expansions.

The infinte sum of k-th iterated derivative of the complex exponential multiplied by a function that grows polynomially is absolutely and uniformly convergent.

theorem differentiableAt_iteratedDerivWithin_cexp (n a : ) {s : Set } (hs : IsOpen s) {r : } (hr : r s) :
theorem EisensteinSeries.qExpansion_identity {k : } (hk : 1 k) (z : UpperHalfPlane) :
∑' (n : ), 1 / (z + n) ^ (k + 1) = (-2 * Real.pi * Complex.I) ^ (k + 1) / k.factorial * ∑' (n : ), n ^ k * Complex.exp (2 * Real.pi * Complex.I * z) ^ n

This is one key identity relating infinite series to q-expansions which shows that ∑' n, 1 / (z + n) ^ (k + 1) = ((-2 π I) ^ (k + 1) / k !) * ∑' n, n ^ k q ^n where q = cexp (2 π I z).

theorem summable_pow_mul_cexp (k : ) (e : ℕ+) (z : UpperHalfPlane) :
Summable fun (c : ) => c ^ k * Complex.exp (2 * Real.pi * Complex.I * e * z) ^ c
theorem EisensteinSeries.qExpansion_identity_pnat {k : } (hk : 1 k) (z : UpperHalfPlane) :
∑' (n : ), 1 / (z + n) ^ (k + 1) = (-2 * Real.pi * Complex.I) ^ (k + 1) / k.factorial * ∑' (n : ℕ+), n ^ k * Complex.exp (2 * Real.pi * Complex.I * z) ^ n

This is a version of EisensteinSeries.qExpansion_identity for positive naturals, which shows that ∑' n, 1 / (z + n) ^ (k + 1) = ((-2 π I) ^ (k + 1) / k !) * ∑' n : ℕ+, n ^ k q ^n where q = cexp (2 π I z).