Documentation

Mathlib.NumberTheory.NumberField.Ideal.Basic

Basic results on integral ideals of a number field #

We study results about integral ideals of a number field K.

Main definitions and results #

theorem IsPrimitiveRoot.not_coprime_norm_of_mk_eq_one {K : Type u_1} [Field K] {I : Ideal (NumberField.RingOfIntegers K)} [NumberField K] (hI : Ideal.absNorm I 1) {n : } {ζ : K} (hn : 2 n) ( : IsPrimitiveRoot ζ n) (h : have x := ; (Ideal.Quotient.mk I) .toInteger = 1) :

For I an integral ideal of K, the group morphism from the torsion of K to (𝓞 K ⧸ I)ˣ.

Equations
Instances For

    If the norm of the (nonzero) prime ideal P is coprime with the order of the torsion of K, then the norm of P is congruent to 1 modulo torsionOrder K.