ℤ[√d] #
The ring of integers adjoined with a square root of d : ℤ.
After defining the norm, we show that it is a linearly ordered commutative ring, as well as an integral domain.
We provide the universal property, that ring homomorphisms ℤ√d →+* R correspond
to choices of square roots of d in R.
The ring of integers adjoined with a square root of d.
These have the form a + b √d where a b : ℤ. The components
are called re and im by analogy to the negative d case.
Equations
- «termℤ√_» = Lean.ParserDescr.node `«termℤ√_» 100 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "ℤ√") (Lean.ParserDescr.cat `term 100))
Instances For
Alias of Zsqrtd.re_ofInt.
Alias of Zsqrtd.im_ofInt.
The zero of the ring
Equations
- Zsqrtd.instZero = { zero := Zsqrtd.ofInt 0 }
Alias of Zsqrtd.re_zero.
Alias of Zsqrtd.im_zero.
Equations
- Zsqrtd.instInhabited = { default := 0 }
The one of the ring
Equations
- Zsqrtd.instOne = { one := Zsqrtd.ofInt 1 }
Alias of Zsqrtd.re_one.
Alias of Zsqrtd.im_one.
Alias of Zsqrtd.re_sqrtd.
Alias of Zsqrtd.im_sqrtd.
Alias of Zsqrtd.re_neg.
Alias of Zsqrtd.im_neg.
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Alias of Zsqrtd.re_star.
Alias of Zsqrtd.im_star.
Equations
- Zsqrtd.instStarRing = { toStar := Zsqrtd.instStar, star_involutive := ⋯, star_mul := ⋯, star_add := ⋯ }
Alias of Zsqrtd.re_natCast.
Alias of Zsqrtd.re_ofNat.
Alias of Zsqrtd.im_natCast.
Alias of Zsqrtd.im_ofNat.
Alias of Zsqrtd.re_intCast.
Alias of Zsqrtd.im_intCast.
"Generalized" nonneg. nonnegg c d x y means a √c + b √d ≥ 0;
we are interested in the case c = 1 but this is more symmetric
Equations
- Zsqrtd.Nonnegg c d (Int.ofNat a) (Int.ofNat b) = True
- Zsqrtd.Nonnegg c d (Int.ofNat a) (Int.negSucc b) = Zsqrtd.SqLe (b + 1) c a d
- Zsqrtd.Nonnegg c d (Int.negSucc a) (Int.ofNat b) = Zsqrtd.SqLe (a + 1) d b c
- Zsqrtd.Nonnegg c d (Int.negSucc a) (Int.negSucc a_1) = False
Instances For
Equations
- Zsqrtd.normMonoidHom = { toFun := Zsqrtd.norm, map_one' := ⋯, map_mul' := ⋯ }
Instances For
Nonnegativity of an element of ℤ√d.
Equations
- { re := a, im := b }.Nonneg = Zsqrtd.Nonnegg d 1 a b
Instances For
Equations
- { re := a, im := b }.decidableNonneg = Zsqrtd.decidableNonnegg d 1 a b
Equations
- x✝¹.decidableLE x✝ = (x✝ - x✝¹).decidableNonneg
Alias of Zsqrtd.Nonsquare.ns.
Equations
- One or more equations did not get rendered due to their size.
The unique RingHom from ℤ√d to a ring R, constructed by replacing √d with the provided
root. Conversely, this associates to every mapping ℤ√d →+* R a value of √d in R.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The kernel of the norm map on ℤ√d equals the submonoid of unitary elements.