Documentation
Mathlib
.
Order
.
Filter
.
AtTopBot
.
Group
Search
return to top
source
Imports
Init
Mathlib.Algebra.Order.Group.Instances
Mathlib.Algebra.Order.Group.MinMax
Mathlib.Order.Filter.AtTopBot.Monoid
Imported by
Filter
.
tendsto_atTop_add_left_of_le'
Filter
.
tendsto_atBot_add_left_of_ge'
Filter
.
tendsto_atTop_add_left_of_le
Filter
.
tendsto_atBot_add_left_of_ge
Filter
.
tendsto_atTop_add_right_of_le'
Filter
.
tendsto_atBot_add_right_of_ge'
Filter
.
tendsto_atTop_add_right_of_le
Filter
.
tendsto_atBot_add_right_of_ge
Filter
.
tendsto_atTop_add_const_left
Filter
.
tendsto_atBot_add_const_left
Filter
.
tendsto_atTop_add_const_right
Filter
.
tendsto_atBot_add_const_right
Filter
.
map_neg_atBot
Filter
.
map_neg_atTop
Filter
.
comap_neg_atBot
Filter
.
comap_neg_atTop
Filter
.
tendsto_neg_atTop_atBot
Filter
.
tendsto_neg_atBot_atTop
Filter
.
tendsto_neg_atTop_iff
Filter
.
tendsto_neg_atBot_iff
Filter
.
tendsto_abs_atTop_atTop
Filter
.
tendsto_abs_atBot_atTop
Filter
.
comap_abs_atTop
Convergence to ±infinity in ordered commutative groups
#
source
theorem
Filter
.
tendsto_atTop_add_left_of_le'
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommGroup
β
]
(l :
Filter
α
)
{f g :
α
→
β
}
(C :
β
)
(hf :
∀ᶠ
(
x
:
α
)
in
l
,
C
≤
f
x
)
(hg :
Tendsto
g
l
atTop
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atTop
source
theorem
Filter
.
tendsto_atBot_add_left_of_ge'
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommGroup
β
]
(l :
Filter
α
)
{f g :
α
→
β
}
(C :
β
)
(hf :
∀ᶠ
(
x
:
α
)
in
l
,
f
x
≤
C
)
(hg :
Tendsto
g
l
atBot
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atBot
source
theorem
Filter
.
tendsto_atTop_add_left_of_le
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommGroup
β
]
(l :
Filter
α
)
{f g :
α
→
β
}
(C :
β
)
(hf :
∀ (
x
:
α
),
C
≤
f
x
)
(hg :
Tendsto
g
l
atTop
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atTop
source
theorem
Filter
.
tendsto_atBot_add_left_of_ge
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommGroup
β
]
(l :
Filter
α
)
{f g :
α
→
β
}
(C :
β
)
(hf :
∀ (
x
:
α
),
f
x
≤
C
)
(hg :
Tendsto
g
l
atBot
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atBot
source
theorem
Filter
.
tendsto_atTop_add_right_of_le'
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommGroup
β
]
(l :
Filter
α
)
{f g :
α
→
β
}
(C :
β
)
(hf :
Tendsto
f
l
atTop
)
(hg :
∀ᶠ
(
x
:
α
)
in
l
,
C
≤
g
x
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atTop
source
theorem
Filter
.
tendsto_atBot_add_right_of_ge'
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommGroup
β
]
(l :
Filter
α
)
{f g :
α
→
β
}
(C :
β
)
(hf :
Tendsto
f
l
atBot
)
(hg :
∀ᶠ
(
x
:
α
)
in
l
,
g
x
≤
C
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atBot
source
theorem
Filter
.
tendsto_atTop_add_right_of_le
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommGroup
β
]
(l :
Filter
α
)
{f g :
α
→
β
}
(C :
β
)
(hf :
Tendsto
f
l
atTop
)
(hg :
∀ (
x
:
α
),
C
≤
g
x
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atTop
source
theorem
Filter
.
tendsto_atBot_add_right_of_ge
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommGroup
β
]
(l :
Filter
α
)
{f g :
α
→
β
}
(C :
β
)
(hf :
Tendsto
f
l
atBot
)
(hg :
∀ (
x
:
α
),
g
x
≤
C
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atBot
source
theorem
Filter
.
tendsto_atTop_add_const_left
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommGroup
β
]
(l :
Filter
α
)
{f :
α
→
β
}
(C :
β
)
(hf :
Tendsto
f
l
atTop
)
:
Tendsto
(fun (
x
:
α
) =>
C
+
f
x
)
l
atTop
source
theorem
Filter
.
tendsto_atBot_add_const_left
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommGroup
β
]
(l :
Filter
α
)
{f :
α
→
β
}
(C :
β
)
(hf :
Tendsto
f
l
atBot
)
:
Tendsto
(fun (
x
:
α
) =>
C
+
f
x
)
l
atBot
source
theorem
Filter
.
tendsto_atTop_add_const_right
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommGroup
β
]
(l :
Filter
α
)
{f :
α
→
β
}
(C :
β
)
(hf :
Tendsto
f
l
atTop
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
C
)
l
atTop
source
theorem
Filter
.
tendsto_atBot_add_const_right
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommGroup
β
]
(l :
Filter
α
)
{f :
α
→
β
}
(C :
β
)
(hf :
Tendsto
f
l
atBot
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
C
)
l
atBot
source
theorem
Filter
.
map_neg_atBot
{β :
Type
u_2}
[
OrderedAddCommGroup
β
]
:
map
Neg.neg
atBot
=
atTop
source
theorem
Filter
.
map_neg_atTop
{β :
Type
u_2}
[
OrderedAddCommGroup
β
]
:
map
Neg.neg
atTop
=
atBot
source
theorem
Filter
.
comap_neg_atBot
{β :
Type
u_2}
[
OrderedAddCommGroup
β
]
:
comap
Neg.neg
atBot
=
atTop
source
theorem
Filter
.
comap_neg_atTop
{β :
Type
u_2}
[
OrderedAddCommGroup
β
]
:
comap
Neg.neg
atTop
=
atBot
source
theorem
Filter
.
tendsto_neg_atTop_atBot
{β :
Type
u_2}
[
OrderedAddCommGroup
β
]
:
Tendsto
Neg.neg
atTop
atBot
source
theorem
Filter
.
tendsto_neg_atBot_atTop
{β :
Type
u_2}
[
OrderedAddCommGroup
β
]
:
Tendsto
Neg.neg
atBot
atTop
source
@[simp]
theorem
Filter
.
tendsto_neg_atTop_iff
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommGroup
β
]
{l :
Filter
α
}
{f :
α
→
β
}
:
Tendsto
(fun (
x
:
α
) =>
-
f
x
)
l
atTop
↔
Tendsto
f
l
atBot
source
@[simp]
theorem
Filter
.
tendsto_neg_atBot_iff
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommGroup
β
]
{l :
Filter
α
}
{f :
α
→
β
}
:
Tendsto
(fun (
x
:
α
) =>
-
f
x
)
l
atBot
↔
Tendsto
f
l
atTop
source
theorem
Filter
.
tendsto_abs_atTop_atTop
{α :
Type
u_1}
[
LinearOrderedAddCommGroup
α
]
:
Tendsto
abs
atTop
atTop
$\lim_{x\to+\infty}|x|=+\infty$
source
theorem
Filter
.
tendsto_abs_atBot_atTop
{α :
Type
u_1}
[
LinearOrderedAddCommGroup
α
]
:
Tendsto
abs
atBot
atTop
$\lim_{x\to-\infty}|x|=+\infty$
source
@[simp]
theorem
Filter
.
comap_abs_atTop
{α :
Type
u_1}
[
LinearOrderedAddCommGroup
α
]
:
comap
abs
atTop
=
atBot
⊔
atTop