Documentation

Mathlib.RingTheory.AlgebraicIndependent.TranscendenceBasis

Transcendence basis #

This file defines the transcendence basis as a maximal algebraically independent subset.

Main results #

References #

TODO #

Define the transcendence degree and show it is independent of the choice of a transcendence basis.

Tags #

transcendence basis, transcendence degree, transcendence

theorem exists_isTranscendenceBasis' (R : Type u) {A : Type v} [CommRing R] [CommRing A] [Algebra R A] (h : Function.Injective (algebraMap R A)) :
∃ (ι : Type v) (x : ιA), IsTranscendenceBasis R x

Type version of exists_isTranscendenceBasis.

theorem AlgebraicIndependent.isTranscendenceBasis_iff {ι : Type w} {R : Type u} [CommRing R] [Nontrivial R] {A : Type v} [CommRing A] [Algebra R A] {x : ιA} (i : AlgebraicIndependent R x) :
IsTranscendenceBasis R x ∀ (κ : Type v) (w : κA), AlgebraicIndependent R w∀ (j : ικ), w j = xFunction.Surjective j
theorem IsTranscendenceBasis.isAlgebraic {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] [Nontrivial R] (hx : IsTranscendenceBasis R x) :
theorem IsTranscendenceBasis.isEmpty_iff_isAlgebraic {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] [Nontrivial R] (hx : IsTranscendenceBasis R x) :

If x is a transcendence basis of A/R, then it is empty if and only if A/R is algebraic.

theorem IsTranscendenceBasis.nonempty_iff_transcendental {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] [Nontrivial R] (hx : IsTranscendenceBasis R x) :

If x is a transcendence basis of A/R, then it is not empty if and only if A/R is transcendental.

theorem IsTranscendenceBasis.isAlgebraic_field {ι : Type u_1} {F : Type u_7} {E : Type u_8} {x : ιE} [Field F] [Field E] [Algebra F E] (hx : IsTranscendenceBasis F x) :