Etale locus of an algebra #
Main results #
Let A be a R-algebra.
Algebra.etaleLocus: The set of primes ofAwhere it is étale overR.Algebra.basicOpen_subset_etaleLocus_iff:D(f)is contained in the etale locus if and only ifA_fis formally etale overR.Algebra.etaleLocus_eq_univ_iff: The etale locus is the whole spectrum if and only ifAis formally etale overR.Algebra.isOpen_etaleLocus: IfAis of finite type overR, then the etale locus is open.
def
Algebra.etaleLocus
(R : Type u_1)
(A : Type u_2)
[CommRing R]
[CommRing A]
[Algebra R A]
:
Set (PrimeSpectrum A)
Algebra.etaleLocus R A is the set of primes p of A that are etale.
Equations
- Algebra.etaleLocus R A = {p : PrimeSpectrum A | Algebra.IsEtaleAt R p.asIdeal}
Instances For
@[simp]
theorem
Algebra.mem_etaleLocus_iff
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[CommRing A]
[Algebra R A]
{p : PrimeSpectrum A}
:
theorem
Algebra.isOpen_etaleLocus
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[CommRing A]
[Algebra R A]
[FinitePresentation R A]
:
IsOpen (etaleLocus R A)
theorem
Algebra.basicOpen_subset_etaleLocus_iff_etale
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[CommRing A]
[Algebra R A]
[FinitePresentation R A]
{f : A}
:
theorem
Algebra.etaleLocus_eq_univ_iff_etale
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[CommRing A]
[Algebra R A]
[FinitePresentation R A]
:
theorem
Algebra.exists_etale_of_isEtaleAt
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[CommRing A]
[Algebra R A]
[FinitePresentation R A]
(P : Ideal A)
[P.IsPrime]
[IsEtaleAt R P]
:
∃ f ∉ P, Etale R (Localization.Away f)