Minimal primes #
We provide various results concerning the minimal primes above an ideal
Main results #
Ideal.minimalPrimes
:I.minimalPrimes
is the set of ideals that are minimal primes overI
.minimalPrimes
:minimalPrimes R
is the set of minimal primes ofR
.Ideal.exists_minimalPrimes_le
: Every prime ideal overI
contains a minimal prime overI
.Ideal.radical_minimalPrimes
: The minimal primes overI.radical
are precisely the minimal primes overI
.Ideal.sInf_minimalPrimes
: The intersection of minimal primes overI
isI.radical
.Ideal.exists_minimalPrimes_comap_eq
Ifp
is a minimal prime overf ⁻¹ I
, then it is the preimage of some minimal prime overI
.Ideal.minimalPrimes_eq_comap
: The minimal primes overI
are precisely the preimages of minimal primes ofR ⧸ I
.Localization.AtPrime.prime_unique_of_minimal
: When localizing at a minimal prime idealI
, the resulting ring only has a single prime ideal.
I.minimalPrimes
is the set of ideals that are minimal primes over I
.
Instances For
minimalPrimes R
is the set of minimal primes of R
.
This is defined as Ideal.minimalPrimes ⊥
.
Equations
- minimalPrimes R = ⊥.minimalPrimes
Instances For
theorem
minimalPrimes_eq_minimals
{R : Type u_1}
[CommSemiring R]
:
minimalPrimes R = {x : Ideal R | Minimal Ideal.IsPrime x}
theorem
Ideal.minimalPrimes_isPrime
{R : Type u_1}
[CommSemiring R]
{I p : Ideal R}
(h : p ∈ I.minimalPrimes)
:
p.IsPrime
theorem
Ideal.exists_minimalPrimes_le
{R : Type u_1}
[CommSemiring R]
{I J : Ideal R}
[J.IsPrime]
(e : I ≤ J)
:
∃ p ∈ I.minimalPrimes, p ≤ J
theorem
Ideal.nonempty_minimalPrimes
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
(h : I ≠ ⊤)
:
Nonempty ↑I.minimalPrimes
theorem
Ideal.eq_bot_of_minimalPrimes_eq_empty
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
(h : I.minimalPrimes = ∅)
:
@[simp]
theorem
Ideal.radical_minimalPrimes
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
:
I.radical.minimalPrimes = I.minimalPrimes
@[simp]
theorem
Ideal.exists_mul_mem_of_mem_minimalPrimes
{R : Type u_1}
[CommSemiring R]
{I p : Ideal R}
(hp : p ∈ I.minimalPrimes)
{x : R}
(hx : x ∈ p)
:
theorem
Ideal.disjoint_nonZeroDivisors_of_mem_minimalPrimes
{R : Type u_1}
[CommSemiring R]
{p : Ideal R}
(hp : p ∈ minimalPrimes R)
:
Disjoint ↑p ↑(nonZeroDivisors R)
minimal primes are contained in zero divisors.
theorem
Ideal.exists_comap_eq_of_mem_minimalPrimes_of_injective
{R : Type u_1}
{S : Type u_2}
[CommSemiring R]
[CommSemiring S]
{f : R →+* S}
(hf : Function.Injective ⇑f)
(p : Ideal R)
(H : p ∈ minimalPrimes R)
:
theorem
Ideal.minimalPrimes_eq_comap
{R : Type u_1}
[CommRing R]
{I : Ideal R}
:
I.minimalPrimes = comap (Quotient.mk I) '' minimalPrimes (R ⧸ I)
theorem
IsLocalization.AtPrime.prime_unique_of_minimal
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
[hI : I.IsPrime]
(hMin : I ∈ minimalPrimes R)
{S : Type u_2}
[CommSemiring S]
[Algebra R S]
[IsLocalization.AtPrime S I]
{J K : Ideal S}
[J.IsPrime]
[K.IsPrime]
:
J = K
theorem
Localization.AtPrime.prime_unique_of_minimal
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
[hI : I.IsPrime]
(hMin : I ∈ minimalPrimes R)
(J : Ideal (Localization I.primeCompl))
[J.IsPrime]
:
J = IsLocalRing.maximalIdeal (Localization I.primeCompl)
theorem
Localization.AtPrime.nilpotent_iff_mem_maximal_of_minimal
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
[hI : I.IsPrime]
(hMin : I ∈ minimalPrimes R)
{x : Localization I.primeCompl}
:
IsNilpotent x ↔ x ∈ IsLocalRing.maximalIdeal (Localization I.primeCompl)
theorem
Localization.AtPrime.nilpotent_iff_not_unit_of_minimal
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
[hI : I.IsPrime]
(hMin : I ∈ minimalPrimes R)
{x : Localization I.primeCompl}
:
IsNilpotent x ↔ x ∈ nonunits (Localization I.primeCompl)