Invariant Extensions of Rings #
In this file we generalize the results in RingTheory/Invariant/Basic.lean
to profinite groups.
Main statements #
Let G
be a profinite group acting continuously on a
commutative ring B
(with the discrete topology) satisfying Algebra.IsInvariant A B G
.
Algebra.IsInvariant.isIntegral_of_profinite
:B/A
is an integral extension.Algebra.IsInvariant.exists_smul_of_under_eq_of_profinite
:G
acts transitivity on the prime ideals ofB
lying above a given prime ideal ofA
.Ideal.Quotient.stabilizerHom_surjective_of_profinite
: ifQ
is a prime ideal ofB
lying over a prime idealP
ofA
, then the stabilizer subgroup ofQ
surjects ontoAut((B/Q)/(A/P))
.
theorem
Algebra.IsInvariant.isIntegral_of_profinite
{A : Type u_1}
{B : Type u_2}
[CommRing A]
[CommRing B]
[Algebra A B]
{G : Type u_3}
[Group G]
[MulSemiringAction G B]
[SMulCommClass G A B]
[TopologicalSpace G]
[CompactSpace G]
[TotallyDisconnectedSpace G]
[IsTopologicalGroup G]
[TopologicalSpace B]
[DiscreteTopology B]
[ContinuousSMul G B]
[IsInvariant A B G]
:
theorem
Algebra.IsInvariant.exists_smul_of_under_eq_of_profinite
{A : Type u_1}
{B : Type u_2}
[CommRing A]
[CommRing B]
[Algebra A B]
{G : Type u_3}
[Group G]
[MulSemiringAction G B]
[SMulCommClass G A B]
[TopologicalSpace G]
[CompactSpace G]
[TotallyDisconnectedSpace G]
[IsTopologicalGroup G]
[TopologicalSpace B]
[DiscreteTopology B]
[ContinuousSMul G B]
[IsInvariant A B G]
(P Q : Ideal B)
[P.IsPrime]
[Q.IsPrime]
(hPQ : Ideal.under A P = Ideal.under A Q)
:
G
acts transitively on the prime ideals of B
above a given prime ideal of A
.
theorem
Ideal.Quotient.stabilizerHomSurjectiveAuxFunctor_aux
{A : Type u_1}
{B : Type u_2}
[CommRing A]
[CommRing B]
[Algebra A B]
{G : Type u_3}
[Group G]
[MulSemiringAction G B]
[SMulCommClass G A B]
[TopologicalSpace G]
(Q : Ideal B)
{N N' : OpenNormalSubgroup G}
(e : N ≤ N')
(x : G ⧸ ↑N.toOpenSubgroup)
(hx : x ∈ MulAction.stabilizer (G ⧸ ↑N.toOpenSubgroup) (under (↥(FixedPoints.subalgebra A B ↥↑N.toOpenSubgroup)) Q))
:
(QuotientGroup.map (↑N.toOpenSubgroup) N'.toOpenSubgroup.1 (MonoidHom.id G) e) x ∈ MulAction.stabilizer (G ⧸ ↑N'.toOpenSubgroup) (under (↥(FixedPoints.subalgebra A B ↥↑N'.toOpenSubgroup)) Q)
def
Ideal.Quotient.stabilizerHomSurjectiveAuxFunctor
{A : Type u_1}
{B : Type u_2}
[CommRing A]
[CommRing B]
[Algebra A B]
{G : Type u_3}
[Group G]
[MulSemiringAction G B]
[SMulCommClass G A B]
[TopologicalSpace G]
(P : Ideal A)
(Q : Ideal B)
[Q.LiesOver P]
(σ : (B ⧸ Q) ≃ₐ[A ⧸ P] B ⧸ Q)
:
(Implementation)
The functor taking an open normal subgroup N ≤ G
to the set of lifts of σ
in G ⧸ N
.
We will show that its inverse limit is nonempty to conclude that there exists a lift in G
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
instFiniteObjOpenNormalSubgroupStabilizerHomSurjectiveAuxFunctor
{A : Type u_1}
{B : Type u_2}
[CommRing A]
[CommRing B]
[Algebra A B]
{G : Type u_3}
[Group G]
[MulSemiringAction G B]
[SMulCommClass G A B]
[TopologicalSpace G]
[CompactSpace G]
[IsTopologicalGroup G]
(P : Ideal A)
(Q : Ideal B)
[Q.LiesOver P]
(σ : (B ⧸ Q) ≃ₐ[A ⧸ P] B ⧸ Q)
(N : OpenNormalSubgroup G)
:
instance
instNonemptyObjOpenNormalSubgroupStabilizerHomSurjectiveAuxFunctor
{A : Type u_1}
{B : Type u_2}
[CommRing A]
[CommRing B]
[Algebra A B]
{G : Type u_3}
[Group G]
[MulSemiringAction G B]
[SMulCommClass G A B]
[TopologicalSpace G]
[CompactSpace G]
[IsTopologicalGroup G]
(P : Ideal A)
(Q : Ideal B)
[Q.IsPrime]
[Q.LiesOver P]
[Algebra.IsInvariant A B G]
(σ : (B ⧸ Q) ≃ₐ[A ⧸ P] B ⧸ Q)
(N : OpenNormalSubgroup G)
:
theorem
Ideal.Quotient.stabilizerHom_surjective_of_profinite
{A : Type u_1}
{B : Type u_2}
[CommRing A]
[CommRing B]
[Algebra A B]
{G : Type u_3}
[Group G]
[MulSemiringAction G B]
[SMulCommClass G A B]
[TopologicalSpace G]
[CompactSpace G]
[TotallyDisconnectedSpace G]
[IsTopologicalGroup G]
[TopologicalSpace B]
[DiscreteTopology B]
[ContinuousSMul G B]
(P : Ideal A)
(Q : Ideal B)
[Q.IsPrime]
[Q.LiesOver P]
[Algebra.IsInvariant A B G]
:
Function.Surjective ⇑(stabilizerHom Q P G)
The stabilizer subgroup of Q
surjects onto Aut((B/Q)/(A/P))
.