Krull Dimension of Module #
In this file we define Module.supportDim R M
for a R
-module M
as
the krull dimension of its support. It is equal to the krull dimension of R / Ann M
when
M
is finitely generated.
noncomputable def
Module.supportDim
(R : Type u_1)
[CommRing R]
(M : Type u_2)
[AddCommGroup M]
[Module R M]
:
The krull dimension of module, defined as krullDim
of its support.
Equations
- Module.supportDim R M = Order.krullDim ↑(Module.support R M)
Instances For
theorem
Module.supportDim_eq_bot_of_subsingleton
(R : Type u_1)
[CommRing R]
(M : Type u_2)
[AddCommGroup M]
[Module R M]
[Subsingleton M]
:
theorem
Module.supportDim_ne_bot_of_nontrivial
(R : Type u_1)
[CommRing R]
(M : Type u_2)
[AddCommGroup M]
[Module R M]
[Nontrivial M]
:
theorem
Module.supportDim_eq_bot_iff_subsingleton
(R : Type u_1)
[CommRing R]
(M : Type u_2)
[AddCommGroup M]
[Module R M]
:
theorem
Module.supportDim_ne_bot_iff_nontrivial
(R : Type u_1)
[CommRing R]
(M : Type u_2)
[AddCommGroup M]
[Module R M]
:
theorem
Module.supportDim_eq_ringKrullDim_quotient_annihilator
(R : Type u_1)
[CommRing R]
(M : Type u_2)
[AddCommGroup M]
[Module R M]
[Module.Finite R M]
:
theorem
Module.supportDim_le_ringKrullDim
(R : Type u_1)
[CommRing R]
(M : Type u_2)
[AddCommGroup M]
[Module R M]
:
theorem
Module.supportDim_le_of_injective
{R : Type u_1}
[CommRing R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
{N : Type u_3}
[AddCommGroup N]
[Module R N]
(f : M →ₗ[R] N)
(h : Function.Injective ⇑f)
:
theorem
Module.supportDim_le_of_surjective
{R : Type u_1}
[CommRing R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
{N : Type u_3}
[AddCommGroup N]
[Module R N]
(f : M →ₗ[R] N)
(h : Function.Surjective ⇑f)
:
theorem
Module.supportDim_eq_of_equiv
{R : Type u_1}
[CommRing R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
{N : Type u_3}
[AddCommGroup N]
[Module R N]
(e : M ≃ₗ[R] N)
: