Documentation

Mathlib.RingTheory.KrullDimension.Module

Krull Dimension of Module #

In this file we define Module.supportDim R M for a R-module M as the krull dimension of its support. It is equal to the krull dimension of R / Ann M when M is finitely generated.

noncomputable def Module.supportDim (R : Type u_1) [CommRing R] (M : Type u_2) [AddCommGroup M] [Module R M] :

The krull dimension of module, defined as krullDim of its support.

Equations
Instances For
    theorem Module.supportDim_le_of_injective {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {N : Type u_3} [AddCommGroup N] [Module R N] (f : M →ₗ[R] N) (h : Function.Injective f) :
    theorem Module.supportDim_le_of_surjective {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {N : Type u_3} [AddCommGroup N] [Module R N] (f : M →ₗ[R] N) (h : Function.Surjective f) :
    theorem Module.supportDim_eq_of_equiv {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {N : Type u_3} [AddCommGroup N] [Module R N] (e : M ≃ₗ[R] N) :