Documentation

Mathlib.RingTheory.Localization.FractionRing

Fraction ring / fraction field Frac(R) as localization #

Main definitions #

Main results #

Implementation notes #

See Mathlib/RingTheory/Localization/Basic.lean for a design overview.

Tags #

localization, ring localization, commutative ring localization, characteristic predicate, commutative ring, field of fractions

@[reducible, inline]
abbrev IsFractionRing (R : Type u_1) [CommRing R] (K : Type u_5) [CommRing K] [Algebra R K] :

IsFractionRing R K states K is the ring of fractions of a commutative ring R.

Equations
Instances For
    instance instIsFractionRing {R : Type u_6} [Field R] :
    Equations
    • =
    theorem IsFractionRing.to_map_eq_zero_iff {R : Type u_1} [CommRing R] {K : Type u_5} [CommRing K] [Algebra R K] [IsFractionRing R K] {x : R} :
    (algebraMap R K) x = 0 x = 0
    @[simp]
    theorem IsFractionRing.coe_inj {R : Type u_1} [CommRing R] {K : Type u_5} [CommRing K] [Algebra R K] [IsFractionRing R K] {a b : R} :
    a = b a = b
    @[instance 100]
    Equations
    • =
    theorem IsFractionRing.isDomain (A : Type u_4) [CommRing A] {K : Type u_5} [CommRing K] [Algebra A K] [IsFractionRing A K] [IsDomain A] :

    A CommRing K which is the localization of an integral domain R at R - {0} is an integral domain.

    theorem IsFractionRing.inv_def (A : Type u_6) [CommRing A] {K : Type u_7} [CommRing K] [Algebra A K] [IsFractionRing A K] [IsDomain A] (z : K) :
    IsFractionRing.inv A z = if h : z = 0 then 0 else IsLocalization.mk' K (IsLocalization.sec (nonZeroDivisors A) z).2 (IsLocalization.sec (nonZeroDivisors A) z).1,
    @[irreducible]
    noncomputable def IsFractionRing.inv (A : Type u_6) [CommRing A] {K : Type u_7} [CommRing K] [Algebra A K] [IsFractionRing A K] [IsDomain A] (z : K) :
    K

    The inverse of an element in the field of fractions of an integral domain.

    Equations
    Instances For
      theorem IsFractionRing.mul_inv_cancel (A : Type u_4) [CommRing A] {K : Type u_5} [CommRing K] [Algebra A K] [IsFractionRing A K] [IsDomain A] (x : K) (hx : x 0) :
      @[reducible, inline]
      noncomputable abbrev IsFractionRing.toField (A : Type u_4) [CommRing A] {K : Type u_5} [CommRing K] [Algebra A K] [IsFractionRing A K] [IsDomain A] :

      A CommRing K which is the localization of an integral domain R at R - {0} is a field. See note [reducible non-instances].

      Stacks Tag 09FJ

      Equations
      Instances For
        theorem IsFractionRing.mk'_mk_eq_div {A : Type u_4} [CommRing A] {K : Type u_5} [Field K] [Algebra A K] [IsFractionRing A K] {r s : A} (hs : s nonZeroDivisors A) :
        IsLocalization.mk' K r s, hs = (algebraMap A K) r / (algebraMap A K) s
        @[simp]
        theorem IsFractionRing.mk'_eq_div {A : Type u_4} [CommRing A] {K : Type u_5} [Field K] [Algebra A K] [IsFractionRing A K] {r : A} (s : (nonZeroDivisors A)) :
        IsLocalization.mk' K r s = (algebraMap A K) r / (algebraMap A K) s
        theorem IsFractionRing.div_surjective {A : Type u_4} [CommRing A] {K : Type u_5} [Field K] [Algebra A K] [IsFractionRing A K] (z : K) :
        ∃ (x : A), ynonZeroDivisors A, (algebraMap A K) x / (algebraMap A K) y = z
        theorem IsFractionRing.isUnit_map_of_injective {A : Type u_4} [CommRing A] {L : Type u_7} [Field L] {g : A →+* L} (hg : Function.Injective g) (y : (nonZeroDivisors A)) :
        IsUnit (g y)
        theorem IsFractionRing.mk'_eq_zero_iff_eq_zero {R : Type u_1} [CommRing R] {K : Type u_5} [Field K] [Algebra R K] [IsFractionRing R K] {x : R} {y : (nonZeroDivisors R)} :
        theorem IsFractionRing.mk'_eq_one_iff_eq {A : Type u_4} [CommRing A] {K : Type u_5} [Field K] [Algebra A K] [IsFractionRing A K] {x : A} {y : (nonZeroDivisors A)} :
        IsLocalization.mk' K x y = 1 x = y

        If A is a commutative ring with fraction field K, then the subfield of K generated by the image of algebraMap A K is equal to the whole field K.

        theorem IsFractionRing.ringHom_fieldRange_eq_of_comp_eq {A : Type u_4} [CommRing A] {K : Type u_5} [Field K] [Algebra A K] [IsFractionRing A K] {L : Type u_8} [Field L] {g : A →+* L} {f : K →+* L} (h : f.comp (algebraMap A K) = g) :
        f.fieldRange = Subfield.closure g.range

        If A is a commutative ring with fraction field K, L is a field, g : A →+* L lifts to f : K →+* L, then the image of f is the subfield generated by the image of g.

        theorem IsFractionRing.ringHom_fieldRange_eq_of_comp_eq_of_range_eq {A : Type u_4} [CommRing A] {K : Type u_5} [Field K] [Algebra A K] [IsFractionRing A K] {L : Type u_8} [Field L] {g : A →+* L} {f : K →+* L} (h : f.comp (algebraMap A K) = g) {s : Set L} (hs : g.range = Subring.closure s) :
        f.fieldRange = Subfield.closure s

        If A is a commutative ring with fraction field K, L is a field, g : A →+* L lifts to f : K →+* L, s is a set such that the image of g is the subring generated by s, then the image of f is the subfield generated by s.

        noncomputable def IsFractionRing.lift {A : Type u_4} [CommRing A] {K : Type u_5} [Field K] {L : Type u_7} [Field L] [Algebra A K] [IsFractionRing A K] {g : A →+* L} (hg : Function.Injective g) :
        K →+* L

        Given a commutative ring A with field of fractions K, and an injective ring hom g : A →+* L where L is a field, we get a field hom sending z : K to g x * (g y)⁻¹, where (x, y) : A × (NonZeroDivisors A) are such that z = f x * (f y)⁻¹.

        Equations
        Instances For
          noncomputable def IsFractionRing.liftAlgHom {R : Type u_1} [CommRing R] {A : Type u_4} [CommRing A] {K : Type u_5} [Field K] {L : Type u_7} [Field L] [Algebra A K] [IsFractionRing A K] [Algebra R A] [Algebra R K] [IsScalarTower R A K] [Algebra R L] {g : A →ₐ[R] L} (hg : Function.Injective g) :

          AlgHom version of IsFractionRing.lift.

          Equations
          Instances For
            theorem IsFractionRing.liftAlgHom_toRingHom {R : Type u_1} [CommRing R] {A : Type u_4} [CommRing A] {K : Type u_5} [Field K] {L : Type u_7} [Field L] [Algebra A K] [IsFractionRing A K] [Algebra R A] [Algebra R K] [IsScalarTower R A K] [Algebra R L] {g : A →ₐ[R] L} (hg : Function.Injective g) :
            @[simp]
            theorem IsFractionRing.coe_liftAlgHom {R : Type u_1} [CommRing R] {A : Type u_4} [CommRing A] {K : Type u_5} [Field K] {L : Type u_7} [Field L] [Algebra A K] [IsFractionRing A K] [Algebra R A] [Algebra R K] [IsScalarTower R A K] [Algebra R L] {g : A →ₐ[R] L} (hg : Function.Injective g) :
            theorem IsFractionRing.liftAlgHom_apply {R : Type u_1} [CommRing R] {A : Type u_4} [CommRing A] {K : Type u_5} [Field K] {L : Type u_7} [Field L] [Algebra A K] [IsFractionRing A K] [Algebra R A] [Algebra R K] [IsScalarTower R A K] [Algebra R L] {g : A →ₐ[R] L} (hg : Function.Injective g) (x : K) :
            @[simp]
            theorem IsFractionRing.lift_algebraMap {A : Type u_4} [CommRing A] {K : Type u_5} [Field K] {L : Type u_7} [Field L] [Algebra A K] [IsFractionRing A K] {g : A →+* L} (hg : Function.Injective g) (x : A) :
            (IsFractionRing.lift hg) ((algebraMap A K) x) = g x

            Given a commutative ring A with field of fractions K, and an injective ring hom g : A →+* L where L is a field, the field hom induced from K to L maps x to g x for all x : A.

            theorem IsFractionRing.lift_fieldRange {A : Type u_4} [CommRing A] {K : Type u_5} [Field K] {L : Type u_7} [Field L] [Algebra A K] [IsFractionRing A K] {g : A →+* L} (hg : Function.Injective g) :
            (IsFractionRing.lift hg).fieldRange = Subfield.closure g.range

            The image of IsFractionRing.lift is the subfield generated by the image of the ring hom.

            theorem IsFractionRing.lift_fieldRange_eq_of_range_eq {A : Type u_4} [CommRing A] {K : Type u_5} [Field K] {L : Type u_7} [Field L] [Algebra A K] [IsFractionRing A K] {g : A →+* L} (hg : Function.Injective g) {s : Set L} (hs : g.range = Subring.closure s) :

            The image of IsFractionRing.lift is the subfield generated by s, if the image of the ring hom is the subring generated by s.

            theorem IsFractionRing.lift_mk' {A : Type u_4} [CommRing A] {K : Type u_5} [Field K] {L : Type u_7} [Field L] [Algebra A K] [IsFractionRing A K] {g : A →+* L} (hg : Function.Injective g) (x : A) (y : (nonZeroDivisors A)) :
            (IsFractionRing.lift hg) (IsLocalization.mk' K x y) = g x / g y

            Given a commutative ring A with field of fractions K, and an injective ring hom g : A →+* L where L is a field, field hom induced from K to L maps f x / f y to g x / g y for all x : A, y ∈ NonZeroDivisors A.

            noncomputable def IsFractionRing.map {A : Type u_8} {B : Type u_9} {K : Type u_10} {L : Type u_11} [CommRing A] [CommRing B] [IsDomain B] [CommRing K] [Algebra A K] [IsFractionRing A K] [CommRing L] [Algebra B L] [IsFractionRing B L] {j : A →+* B} (hj : Function.Injective j) :
            K →+* L

            Given commutative rings A, B where B is an integral domain, with fraction rings K, L and an injective ring hom j : A →+* B, we get a ring hom sending z : K to g (j x) * (g (j y))⁻¹, where (x, y) : A × (NonZeroDivisors A) are such that z = f x * (f y)⁻¹.

            Equations
            Instances For
              noncomputable def IsFractionRing.ringEquivOfRingEquiv {A : Type u_8} {K : Type u_9} {B : Type u_10} {L : Type u_11} [CommRing A] [CommRing B] [CommRing K] [CommRing L] [Algebra A K] [IsFractionRing A K] [Algebra B L] [IsFractionRing B L] (h : A ≃+* B) :
              K ≃+* L

              Given rings A, B and localization maps to their fraction rings f : A →+* K, g : B →+* L, an isomorphism h : A ≃+* B induces an isomorphism of fraction rings K ≃+* L.

              Equations
              Instances For
                @[deprecated IsFractionRing.ringEquivOfRingEquiv]
                def IsFractionRing.fieldEquivOfRingEquiv {A : Type u_8} {K : Type u_9} {B : Type u_10} {L : Type u_11} [CommRing A] [CommRing B] [CommRing K] [CommRing L] [Algebra A K] [IsFractionRing A K] [Algebra B L] [IsFractionRing B L] (h : A ≃+* B) :
                K ≃+* L

                Alias of IsFractionRing.ringEquivOfRingEquiv.


                Given rings A, B and localization maps to their fraction rings f : A →+* K, g : B →+* L, an isomorphism h : A ≃+* B induces an isomorphism of fraction rings K ≃+* L.

                Equations
                Instances For
                  @[simp]
                  theorem IsFractionRing.ringEquivOfRingEquiv_algebraMap {A : Type u_8} {K : Type u_9} {B : Type u_10} {L : Type u_11} [CommRing A] [CommRing B] [CommRing K] [CommRing L] [Algebra A K] [IsFractionRing A K] [Algebra B L] [IsFractionRing B L] (h : A ≃+* B) (a : A) :
                  @[deprecated IsFractionRing.ringEquivOfRingEquiv_algebraMap]
                  theorem IsFractionRing.fieldEquivOfRingEquiv_algebraMap {A : Type u_8} {K : Type u_9} {B : Type u_10} {L : Type u_11} [CommRing A] [CommRing B] [CommRing K] [CommRing L] [Algebra A K] [IsFractionRing A K] [Algebra B L] [IsFractionRing B L] (h : A ≃+* B) (a : A) :

                  Alias of IsFractionRing.ringEquivOfRingEquiv_algebraMap.

                  noncomputable def IsFractionRing.algEquivOfAlgEquiv {R : Type u_8} {A : Type u_9} {K : Type u_10} {B : Type u_11} {L : Type u_12} [CommSemiring R] [CommRing A] [CommRing B] [CommRing K] [CommRing L] [Algebra R A] [Algebra R K] [Algebra A K] [IsFractionRing A K] [IsScalarTower R A K] [Algebra R B] [Algebra R L] [Algebra B L] [IsFractionRing B L] [IsScalarTower R B L] (h : A ≃ₐ[R] B) :

                  Given R-algebras A, B and localization maps to their fraction rings f : A →ₐ[R] K, g : B →ₐ[R] L, an isomorphism h : A ≃ₐ[R] B induces an isomorphism of fraction rings K ≃ₐ[R] L.

                  Equations
                  Instances For
                    @[simp]
                    theorem IsFractionRing.algEquivOfAlgEquiv_algebraMap {R : Type u_8} {A : Type u_9} {K : Type u_10} {B : Type u_11} {L : Type u_12} [CommSemiring R] [CommRing A] [CommRing B] [CommRing K] [CommRing L] [Algebra R A] [Algebra R K] [Algebra A K] [IsFractionRing A K] [IsScalarTower R A K] [Algebra R B] [Algebra R L] [Algebra B L] [IsFractionRing B L] [IsScalarTower R B L] (h : A ≃ₐ[R] B) (a : A) :
                    @[simp]
                    theorem IsFractionRing.algEquivOfAlgEquiv_symm {R : Type u_8} {A : Type u_9} {K : Type u_10} {B : Type u_11} {L : Type u_12} [CommSemiring R] [CommRing A] [CommRing B] [CommRing K] [CommRing L] [Algebra R A] [Algebra R K] [Algebra A K] [IsFractionRing A K] [IsScalarTower R A K] [Algebra R B] [Algebra R L] [Algebra B L] [IsFractionRing B L] [IsScalarTower R B L] (h : A ≃ₐ[R] B) :
                    noncomputable def IsFractionRing.fieldEquivOfAlgEquiv {A : Type u_8} {B : Type u_9} {C : Type u_10} [CommRing A] [CommRing B] [CommRing C] [Algebra A B] [Algebra A C] (FA : Type u_12) (FB : Type u_13) (FC : Type u_14) [Field FA] [Field FB] [Field FC] [Algebra A FA] [Algebra B FB] [Algebra C FC] [IsFractionRing A FA] [IsFractionRing B FB] [IsFractionRing C FC] [Algebra A FB] [IsScalarTower A B FB] [Algebra A FC] [IsScalarTower A C FC] [Algebra FA FB] [IsScalarTower A FA FB] [Algebra FA FC] [IsScalarTower A FA FC] (f : B ≃ₐ[A] C) :
                    FB ≃ₐ[FA] FC

                    An algebra isomorphism of rings induces an algebra isomorphism of fraction fields.

                    Equations
                    Instances For
                      theorem IsFractionRing.restrictScalars_fieldEquivOfAlgEquiv {A : Type u_8} {B : Type u_9} {C : Type u_10} [CommRing A] [CommRing B] [CommRing C] [Algebra A B] [Algebra A C] (FA : Type u_12) (FB : Type u_13) (FC : Type u_14) [Field FA] [Field FB] [Field FC] [Algebra A FA] [Algebra B FB] [Algebra C FC] [IsFractionRing A FA] [IsFractionRing B FB] [IsFractionRing C FC] [Algebra A FB] [IsScalarTower A B FB] [Algebra A FC] [IsScalarTower A C FC] [Algebra FA FB] [IsScalarTower A FA FB] [Algebra FA FC] [IsScalarTower A FA FC] (f : B ≃ₐ[A] C) :
                      @[simp]
                      theorem IsFractionRing.fieldEquivOfAlgEquiv_algebraMap {A : Type u_8} {B : Type u_9} {C : Type u_10} [CommRing A] [CommRing B] [CommRing C] [Algebra A B] [Algebra A C] (FA : Type u_12) (FB : Type u_13) (FC : Type u_14) [Field FA] [Field FB] [Field FC] [Algebra A FA] [Algebra B FB] [Algebra C FC] [IsFractionRing A FA] [IsFractionRing B FB] [IsFractionRing C FC] [Algebra A FB] [IsScalarTower A B FB] [Algebra A FC] [IsScalarTower A C FC] [Algebra FA FB] [IsScalarTower A FA FB] [Algebra FA FC] [IsScalarTower A FA FC] (f : B ≃ₐ[A] C) (b : B) :
                      (IsFractionRing.fieldEquivOfAlgEquiv FA FB FC f) ((algebraMap B FB) b) = (algebraMap C FC) (f b)

                      This says that fieldEquivOfAlgEquiv f is an extension of f (i.e., it agrees with f on B). Whereas (fieldEquivOfAlgEquiv f).commutes says that fieldEquivOfAlgEquiv f fixes K.

                      @[simp]
                      theorem IsFractionRing.fieldEquivOfAlgEquiv_refl (A : Type u_8) (B : Type u_9) [CommRing A] [CommRing B] [Algebra A B] (FA : Type u_12) (FB : Type u_13) [Field FA] [Field FB] [Algebra A FA] [Algebra B FB] [IsFractionRing A FA] [IsFractionRing B FB] [Algebra A FB] [IsScalarTower A B FB] [Algebra FA FB] [IsScalarTower A FA FB] :
                      IsFractionRing.fieldEquivOfAlgEquiv FA FB FB AlgEquiv.refl = AlgEquiv.refl
                      theorem IsFractionRing.fieldEquivOfAlgEquiv_trans {A : Type u_8} {B : Type u_9} {C : Type u_10} {D : Type u_11} [CommRing A] [CommRing B] [CommRing C] [CommRing D] [Algebra A B] [Algebra A C] [Algebra A D] (FA : Type u_12) (FB : Type u_13) (FC : Type u_14) (FD : Type u_15) [Field FA] [Field FB] [Field FC] [Field FD] [Algebra A FA] [Algebra B FB] [Algebra C FC] [Algebra D FD] [IsFractionRing A FA] [IsFractionRing B FB] [IsFractionRing C FC] [IsFractionRing D FD] [Algebra A FB] [IsScalarTower A B FB] [Algebra A FC] [IsScalarTower A C FC] [Algebra A FD] [IsScalarTower A D FD] [Algebra FA FB] [IsScalarTower A FA FB] [Algebra FA FC] [IsScalarTower A FA FC] [Algebra FA FD] [IsScalarTower A FA FD] (f : B ≃ₐ[A] C) (g : C ≃ₐ[A] D) :
                      noncomputable def IsFractionRing.fieldEquivOfAlgEquivHom {A : Type u_8} {B : Type u_9} [CommRing A] [CommRing B] [Algebra A B] (K : Type u_10) (L : Type u_11) [Field K] [Field L] [Algebra A K] [Algebra B L] [IsFractionRing A K] [IsFractionRing B L] [Algebra A L] [IsScalarTower A B L] [Algebra K L] [IsScalarTower A K L] :
                      (B ≃ₐ[A] B) →* L ≃ₐ[K] L

                      An algebra automorphism of a ring induces an algebra automorphism of its fraction field.

                      This is a bundled version of fieldEquivOfAlgEquiv.

                      Equations
                      Instances For
                        @[simp]
                        theorem IsFractionRing.fieldEquivOfAlgEquivHom_apply {A : Type u_8} {B : Type u_9} [CommRing A] [CommRing B] [Algebra A B] (K : Type u_10) (L : Type u_11) [Field K] [Field L] [Algebra A K] [Algebra B L] [IsFractionRing A K] [IsFractionRing B L] [Algebra A L] [IsScalarTower A B L] [Algebra K L] [IsScalarTower A K L] (f : B ≃ₐ[A] B) :
                        theorem algebraMap_injective_of_field_isFractionRing (R : Type u_1) [CommRing R] (S : Type u_2) [CommRing S] [Algebra R S] (K : Type u_6) (L : Type u_7) [Field K] [Semiring L] [Nontrivial L] [Algebra R K] [IsFractionRing R K] [Algebra S L] [Algebra K L] [Algebra R L] [IsScalarTower R S L] [IsScalarTower R K L] :
                        theorem NoZeroSMulDivisors.of_field_isFractionRing (R : Type u_1) [CommRing R] (S : Type u_2) [CommRing S] [Algebra R S] [NoZeroDivisors S] (K : Type u_6) (L : Type u_7) [Field K] [Semiring L] [Nontrivial L] [Algebra R K] [IsFractionRing R K] [Algebra S L] [Algebra K L] [Algebra R L] [IsScalarTower R S L] [IsScalarTower R K L] :
                        @[reducible, inline]
                        abbrev FractionRing (R : Type u_1) [CommRing R] :
                        Type u_1

                        The fraction ring of a commutative ring R as a quotient type.

                        We instantiate this definition as generally as possible, and assume that the commutative ring R is an integral domain only when this is needed for proving.

                        In this generality, this construction is also known as the total fraction ring of R.

                        Equations
                        Instances For
                          Equations
                          Equations
                          • =
                          noncomputable instance FractionRing.field (A : Type u_4) [CommRing A] [IsDomain A] :

                          Porting note: if the fields of this instance are explicitly defined as they were in mathlib3, the last instance in this file suffers a TC timeout

                          Equations
                          @[simp]
                          theorem FractionRing.mk_eq_div (A : Type u_4) [CommRing A] [IsDomain A] {r : A} {s : (nonZeroDivisors A)} :
                          @[reducible, inline]
                          noncomputable abbrev FractionRing.liftAlgebra (R : Type u_1) [CommRing R] (K : Type u_5) [IsDomain R] [Field K] [Algebra R K] [NoZeroSMulDivisors R K] :

                          This is not an instance because it creates a diamond when K = FractionRing R. Should usually be introduced locally along with isScalarTower_liftAlgebra See note [reducible non-instances].

                          Equations
                          Instances For
                            Equations
                            • =
                            noncomputable def FractionRing.algEquiv (A : Type u_4) [CommRing A] (K : Type u_6) [CommRing K] [Algebra A K] [IsFractionRing A K] :

                            Given a ring A and a localization map to a fraction ring f : A →+* K, we get an A-isomorphism between the fraction ring of A as a quotient type and K.

                            Equations
                            Instances For
                              Equations
                              • =