Documentation

Mathlib.RingTheory.MvPolynomial.Symmetric.FundamentalTheorem

The Fundamental Theorem of Symmetric Polynomials #

In a polynomial ring in n variables over a commutative ring, the subalgebra of symmetric polynomials is freely generated by the first n elementary symmetric polynomials (excluding the 0th, which is simply 1). This is expressed as an isomorphism MvPolynomial.esymmAlgEquiv between MvPolynomial (Fin n) R and the symmetric subalgebra of any polynomial ring MvPolynomial σ R with #σ = n. The forward map is called MvPolynomial.esymmAlgHom.

Proof strategy #

We follow the alternative proof on the Wikipedia page https://en.wikipedia.org/wiki/Elementary_symmetric_polynomial#Alternative_proof It suffices to show esymmAlgHom is both injective and surjective.

Endow the Fintype σ with a linear order and endow the (monic) monomials in the polynomial ring MvPolynomial σ R with the lexicographic order on σ →₀ ℕ, which is a well order. Then any nonzero polynomial p : MvPolynomial σ R has a largest nonzero monomial (AddMonoidAlgebra.supDegree toLex p) and the corresponding coefficient is AddMonoidAlgebra.leadingCoeff toLex p. If p is symmetric, any permutation of a nonzero monomial in p must also be a nonzero monomial in p, so the largest nonzero monomial must be antitone as a function σ → ℕ (MvPolynomial.IsSymmetric.antitone_supDegree). We can then construct a monomial in MvPolynomial (Fin n) R whose image under esymmAlgHom has the same supDegree and leadingCoeff as p: MvPolynomial.supDegree_esymmAlgHomMonomial says that the supDegree of the image is given by Fin.accumulate, and Fin.accumulate_invAccumulate says that Fin.invAccumulate is inverse to Fin.accumulate for antitone monomials. If we subtract the image from p, we are left with a symmetric polynomial of lower supDegree, which we may assume to be in the image by induction, thanks to the well-orderedness of Lex (σ →₀ ℕ); the surjectivity of esymmAlgHom follows. For injectivity, just notice that the images of different monic monomials in MvPolynomial (Fin n) R have different supDegree (Fin.accumulate_injective), so if there is at least one nonzero monomial, the images cannot all cancel out (AddMonoidAlgebra.sum_ne_zero_of_injOn_supDegree).

We actually only define Fin.accumulate in the case σ := Fin m rather than an arbitrary Fintype with a linear order; we show that esymmAlgHom is in fact surjective whenever m ≤ n and injective whenever n ≤ m, and then transfer the results to any Fintype σ. See MvPolynomial.injective_esymmAlgHom and MvPolynomial.esymmAlgHom_surjective.

def Fin.accumulate (n m : ) :
(Fin n) →+ Fin m

The jth entry of accumulate n m t is the sum of t i over all i ≥ j.

Equations
Instances For
    @[simp]
    theorem Fin.accumulate_apply (n m : ) (t : Fin n) (j : Fin m) :
    (accumulate n m) t j = iFinset.filter (fun (i : Fin n) => j i) Finset.univ, t i
    def Fin.invAccumulate (n m : ) (s : Fin m) (i : Fin n) :

    The ith entry of invAccumulate n m s is s i - s (i+1), where s j = 0 if j ≥ m.

    Equations
    • Fin.invAccumulate n m s i = (if hi : i < m then s i, hi else 0) - if hi : i + 1 < m then s i + 1, hi else 0
    Instances For
      theorem Fin.accumulate_rec {i n m : } (hin : i < n) (him : i + 1 < m) (t : Fin n) :
      (accumulate n m) t i, = t i, hin + (accumulate n m) t i + 1, him
      theorem Fin.accumulate_last {i n m : } (hin : i < n) (hmi : m = i + 1) (t : Fin n) (ht : ∀ (j : Fin n), m jt j = 0) :
      (accumulate n m) t i, = t i, hin
      theorem Fin.accumulate_invAccumulate {n m : } (hmn : m n) {s : Fin m} (hs : Antitone s) :
      (accumulate n m) (invAccumulate n m s) = s
      noncomputable def MvPolynomial.esymmAlgHom (σ : Type u_1) (R : Type u_3) (n : ) [CommSemiring R] [Fintype σ] :

      The R-algebra homomorphism from $R[x_1,\dots,x_n]$ to the symmetric subalgebra of $R[\{x_i \mid i ∈ σ\}]$ sending $x_i$ to the $i$-th elementary symmetric polynomial.

      Equations
      Instances For
        theorem MvPolynomial.esymmAlgHom_apply {σ : Type u_1} {R : Type u_3} {n : } [CommSemiring R] [Fintype σ] (p : MvPolynomial (Fin n) R) :
        ((esymmAlgHom σ R n) p) = (aeval fun (i : Fin n) => esymm σ R (i + 1)) p
        theorem MvPolynomial.rename_esymmAlgHom {σ : Type u_1} {τ : Type u_2} {R : Type u_3} {n : } [CommSemiring R] [Fintype σ] [Fintype τ] (e : σ τ) :
        (↑(renameSymmetricSubalgebra e)).comp (esymmAlgHom σ R n) = esymmAlgHom τ R n
        noncomputable def MvPolynomial.esymmAlgHomMonomial (σ : Type u_1) {R : Type u_3} {n : } [CommSemiring R] [Fintype σ] (t : Fin n →₀ ) (r : R) :

        The image of a monomial under esymmAlgHom.

        Equations
        Instances For
          theorem MvPolynomial.isSymmetric_esymmAlgHomMonomial {σ : Type u_1} {R : Type u_3} {n : } [CommSemiring R] [Fintype σ] (t : Fin n →₀ ) (r : R) :
          (esymmAlgHomMonomial σ t r).IsSymmetric
          theorem MvPolynomial.esymmAlgHomMonomial_single {σ : Type u_1} {R : Type u_3} {n k : } [CommSemiring R] [Fintype σ] {i : Fin n} {r : R} :
          esymmAlgHomMonomial σ (fun₀ | i => k) r = C r * esymm σ R (i + 1) ^ k
          theorem MvPolynomial.esymmAlgHomMonomial_single_one {σ : Type u_1} {R : Type u_3} {n k : } [CommSemiring R] [Fintype σ] {i : Fin n} :
          esymmAlgHomMonomial σ (fun₀ | i => k) 1 = esymm σ R (i + 1) ^ k
          theorem MvPolynomial.esymmAlgHomMonomial_add {σ : Type u_1} {R : Type u_3} {n : } [CommSemiring R] [Fintype σ] {r : R} {t s : Fin n →₀ } :
          theorem MvPolynomial.esymmAlgHom_zero {σ : Type u_1} {R : Type u_3} {n : } [CommSemiring R] [Fintype σ] {r : R} :
          theorem MvPolynomial.supDegree_esymm {R : Type u_3} {n m : } [CommSemiring R] {i : Fin n} [Nontrivial R] (him : i < m) :
          (ofLex (AddMonoidAlgebra.supDegree (⇑toLex) (esymm (Fin m) R (i + 1)))) = (Fin.accumulate n m) fun₀ | i => 1
          theorem MvPolynomial.monic_esymm {R : Type u_3} {m : } [CommSemiring R] {i : } (him : i m) :
          theorem MvPolynomial.supDegree_esymmAlgHomMonomial {R : Type u_3} {n m : } [CommSemiring R] {r : R} (hr : r 0) (t : Fin n →₀ ) (hnm : n m) :
          theorem MvPolynomial.IsSymmetric.antitone_supDegree {σ : Type u_1} {R : Type u_3} [CommSemiring R] [LinearOrder σ] {p : MvPolynomial σ R} (hp : p.IsSymmetric) :
          theorem MvPolynomial.esymmAlgHom_injective {σ : Type u_1} (R : Type u_3) {n : } [Fintype σ] [CommRing R] (hn : n Fintype.card σ) :
          theorem MvPolynomial.esymmAlgHom_surjective {σ : Type u_1} (R : Type u_3) {n : } [Fintype σ] [CommRing R] (hn : Fintype.card σ n) :
          noncomputable def MvPolynomial.esymmAlgEquiv {σ : Type u_1} (R : Type u_3) {n : } [Fintype σ] [CommRing R] (hn : Fintype.card σ = n) :

          If the cardinality of σ is n, then esymmAlgHom σ R n is an isomorphism.

          Equations
          Instances For
            @[simp]
            theorem MvPolynomial.esymmAlgEquiv_apply {σ : Type u_1} (R : Type u_3) {n : } [Fintype σ] [CommRing R] (hn : Fintype.card σ = n) (a : MvPolynomial (Fin n) R) :
            (esymmAlgEquiv R hn) a = (esymmAlgHom σ R n) a