Galois Groups of Morse Polynomials #
This file proves that Morse polynomials have Galois group S_n. A Morse polynomial is a
polynomial whose roots have at most one collision modulo each maximal ideal.
Main results #
Polynomial.Splits.surjective_toPermHom_of_iSup_inertia_eq_top: If the roots offinShave at most one collision modulo each maximal idealm, and if a groupGacting transitively on the roots inSis generated by inertia subgroups, thenGsurjects onto the symmetric groupS_n.
Such polynomials are called Morse functions in Section 4.4 of [Ser08].
TODO #
- Specialize to the case of number fields where generation by inertia subgroups is a consequence of Minkowski's theorem.
- Show that the Selmer polynomials
X ^ n - X - 1have Galois groupS_n.
References #
- J. P. Serre, Topics in Galois Theory, Section 4.4
theorem
Polynomial.Splits.toPermHom_apply_eq_one_or_isSwap_of_ncard_le_of_mem_inertia
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsDomain S]
{G : Type u_3}
[Group G]
[MulSemiringAction G S]
[SMulCommClass G R S]
{f : Polynomial R}
[DecidableEq ↑(f.rootSet S)]
(hf : (map (algebraMap R S) f).Splits)
(p : Ideal S)
[p.IsPrime]
(hp : (f.rootSet S).ncard ≤ (f.rootSet (S ⧸ p)).ncard + 1)
(g : G)
(hg : g ∈ (Submodule.toAddSubgroup p).inertia G)
:
If the roots of f in S have at most one collision mod p, then a MulSemiringAction on
the roots in S must be the identity permutation or a transposition.
Such polynomials are called Morse functions in Section 4.4 of [Ser08].
theorem
Polynomial.Splits.surjective_toPermHom_of_iSup_inertia_eq_top
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsDomain S]
{G : Type u_3}
[Group G]
[MulSemiringAction G S]
[SMulCommClass G R S]
{f : Polynomial R}
(hf : (map (algebraMap R S) f).Splits)
[MulAction.IsPretransitive G ↑(f.rootSet S)]
(h : ∀ (m : MaximalSpectrum S), (f.rootSet S).ncard ≤ (f.rootSet (S ⧸ m.asIdeal)).ncard + 1)
(hG : ⨆ (m : MaximalSpectrum S), (Submodule.toAddSubgroup m.asIdeal).inertia G = ⊤)
:
Function.Surjective ⇑(MulAction.toPermHom G ↑(f.rootSet S))
If the roots of f in S have at most one collision modulo each maximal ideal m, and if a
group G acting transitively on the roots in S is generated by inertia subgroups, then G
surjects onto the symmetric group S_n.
Such polynomials are called Morse functions in Section 4.4 of [Ser08].