Documentation

Mathlib.RingTheory.Regular.Flat

RingTheory.Sequence.IsWeaklyRegular is stable under flat base change #

Main results #

theorem RingTheory.Sequence.IsWeaklyRegular.of_flat_of_isBaseChange {R : Type u_1} {S : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Module S N] [IsScalarTower R S N] [Module.Flat R S] {f : M →ₗ[R] N} (hf : IsBaseChange S f) {rs : List R} (reg : IsWeaklyRegular M rs) :

Let R be a commutative ring, M be an R-module, S be a flat R-algebra, N be the base change of M to S. If [r₁, …, rₙ] is a weakly regular M-sequence, then its image in N is a weakly regular N-sequence.

theorem RingTheory.Sequence.IsWeaklyRegular.of_flat {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [Module.Flat R S] {rs : List R} (reg : IsWeaklyRegular R rs) :
theorem RingTheory.Sequence.IsWeaklyRegular.of_isLocalizedModule {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Module S N] [IsScalarTower R S N] (T : Submonoid R) [IsLocalization T S] (f : M →ₗ[R] N) [IsLocalizedModule T f] {rs : List R} (reg : IsWeaklyRegular M rs) :
theorem RingTheory.Sequence.IsWeaklyRegular.isRegular_of_isLocalizedModule_of_mem {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Module S N] [IsScalarTower R S N] (p : Ideal R) [p.IsPrime] [IsLocalization.AtPrime S p] [Nontrivial N] [Module.Finite S N] (f : M →ₗ[R] N) [IsLocalizedModule.AtPrime p f] {rs : List R} (reg : IsWeaklyRegular M rs) (mem : rrs, r p) :
IsRegular N (List.map (⇑(algebraMap R S)) rs)
theorem RingTheory.Sequence.IsWeaklyRegular.isRegular_of_isLocalization_of_mem {R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] [IsLocalization.AtPrime S p] {rs : List R} (reg : IsWeaklyRegular R rs) (mem : rrs, r p) :
IsRegular S (List.map (⇑(algebraMap R S)) rs)
theorem RingTheory.Sequence.IsRegular.of_faithfullyFlat_of_isBaseChange {R : Type u_1} {S : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Module S N] [IsScalarTower R S N] [Module.FaithfullyFlat R S] {f : M →ₗ[R] N} (hf : IsBaseChange S f) {rs : List R} (reg : IsRegular M rs) :
IsRegular N (List.map (⇑(algebraMap R S)) rs)

Let R be a commutative ring, M be an R-module, S be a faithfully flat R-algebra, N be the base change of M to S. If [r₁, …, rₙ] is a regular M-sequence, then its image in N is a regular N-sequence.

theorem RingTheory.Sequence.IsRegular.of_faithfullyFlat {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [Module.FaithfullyFlat R S] {rs : List R} (reg : IsRegular R rs) :
IsRegular S (List.map (⇑(algebraMap R S)) rs)