Documentation

Mathlib.RingTheory.RingHom.StandardSmooth

Standard smooth ring homomorphisms #

In this file we define standard smooth ring homomorphisms and show their meta properties.

Notes #

This contribution was created as part of the AIM workshop "Formalizing algebraic geometry" in June 2024.

def RingHom.IsStandardSmooth {R : Type u} {S : Type v} [CommRing R] [CommRing S] (f : R →+* S) :

A ring homomorphism R →+* S is standard smooth if S is standard smooth as R-algebra.

Equations
Instances For
    theorem RingHom.IsStandardSmooth.toAlgebra {R : Type u} {S : Type v} [CommRing R] [CommRing S] {f : R →+* S} (hf : f.IsStandardSmooth) :

    Helper lemma for the algebraize tactic.

    A ring homomorphism R →+* S is standard smooth of relative dimension n if S is standard smooth of relative dimension n as R-algebra.

    Equations
    Instances For

      Helper lemma for the algebraize tactic.

      theorem RingHom.IsStandardSmooth.comp {R : Type u} {S : Type v} [CommRing R] [CommRing S] {T : Type u_1} [CommRing T] {g : S →+* T} {f : R →+* S} (hg : g.IsStandardSmooth) (hf : f.IsStandardSmooth) :
      (g.comp f).IsStandardSmooth