Topology on a linear ordered commutative group #
In this file we prove that a linear ordered commutative group with order topology
is a topological group.
We also prove continuity of abs : G → G
and provide convenience lemmas like ContinuousAt.abs
.
@[instance 100]
instance
LinearOrderedCommGroup.toIsTopologicalGroup
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedCommGroup G]
[OrderTopology G]
:
@[instance 100]
instance
LinearOrderedAddCommGroup.toIsTopologicalAddGroup
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedAddCommGroup G]
[OrderTopology G]
:
theorem
continuous_mabs
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedCommGroup G]
[OrderTopology G]
:
theorem
continuous_abs
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedAddCommGroup G]
[OrderTopology G]
:
theorem
Filter.Tendsto.mabs
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedCommGroup G]
[OrderTopology G]
{α : Type u_2}
{l : Filter α}
{f : α → G}
{a : G}
(h : Tendsto f l (nhds a))
:
theorem
Filter.Tendsto.abs
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedAddCommGroup G]
[OrderTopology G]
{α : Type u_2}
{l : Filter α}
{f : α → G}
{a : G}
(h : Tendsto f l (nhds a))
:
@[simp]
theorem
comap_mabs_nhds_one
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedCommGroup G]
[OrderTopology G]
:
@[simp]
theorem
comap_abs_nhds_zero
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedAddCommGroup G]
[OrderTopology G]
:
theorem
tendsto_one_iff_mabs_tendsto_one
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedCommGroup G]
[OrderTopology G]
{α : Type u_2}
{l : Filter α}
(f : α → G)
:
theorem
tendsto_zero_iff_abs_tendsto_zero
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedAddCommGroup G]
[OrderTopology G]
{α : Type u_2}
{l : Filter α}
(f : α → G)
:
theorem
Continuous.mabs
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedCommGroup G]
[OrderTopology G]
{X : Type u_2}
[TopologicalSpace X]
{f : X → G}
(h : Continuous f)
:
Continuous fun (x : X) => mabs (f x)
theorem
Continuous.abs
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedAddCommGroup G]
[OrderTopology G]
{X : Type u_2}
[TopologicalSpace X]
{f : X → G}
(h : Continuous f)
:
Continuous fun (x : X) => |f x|
theorem
ContinuousAt.mabs
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedCommGroup G]
[OrderTopology G]
{X : Type u_2}
[TopologicalSpace X]
{f : X → G}
{x : X}
(h : ContinuousAt f x)
:
ContinuousAt (fun (x : X) => mabs (f x)) x
theorem
ContinuousAt.abs
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedAddCommGroup G]
[OrderTopology G]
{X : Type u_2}
[TopologicalSpace X]
{f : X → G}
{x : X}
(h : ContinuousAt f x)
:
ContinuousAt (fun (x : X) => |f x|) x
theorem
ContinuousWithinAt.mabs
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedCommGroup G]
[OrderTopology G]
{X : Type u_2}
[TopologicalSpace X]
{f : X → G}
{s : Set X}
{x : X}
(h : ContinuousWithinAt f s x)
:
ContinuousWithinAt (fun (x : X) => mabs (f x)) s x
theorem
ContinuousWithinAt.abs
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedAddCommGroup G]
[OrderTopology G]
{X : Type u_2}
[TopologicalSpace X]
{f : X → G}
{s : Set X}
{x : X}
(h : ContinuousWithinAt f s x)
:
ContinuousWithinAt (fun (x : X) => |f x|) s x
theorem
ContinuousOn.mabs
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedCommGroup G]
[OrderTopology G]
{X : Type u_2}
[TopologicalSpace X]
{f : X → G}
{s : Set X}
(h : ContinuousOn f s)
:
ContinuousOn (fun (x : X) => mabs (f x)) s
theorem
ContinuousOn.abs
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedAddCommGroup G]
[OrderTopology G]
{X : Type u_2}
[TopologicalSpace X]
{f : X → G}
{s : Set X}
(h : ContinuousOn f s)
:
ContinuousOn (fun (x : X) => |f x|) s
theorem
tendsto_mabs_nhdsNE_one
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedCommGroup G]
[OrderTopology G]
:
Filter.Tendsto mabs (nhdsWithin 1 {1}ᶜ) (nhdsWithin 1 (Set.Ioi 1))
theorem
tendsto_abs_nhdsNE_zero
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedAddCommGroup G]
[OrderTopology G]
:
Filter.Tendsto abs (nhdsWithin 0 {0}ᶜ) (nhdsWithin 0 (Set.Ioi 0))
@[deprecated tendsto_abs_nhdsNE_zero (since := "2025-03-18")]
theorem
tendsto_abs_nhdsWithin_zero
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedAddCommGroup G]
[OrderTopology G]
:
Filter.Tendsto abs (nhdsWithin 0 {0}ᶜ) (nhdsWithin 0 (Set.Ioi 0))
Alias of tendsto_abs_nhdsNE_zero
.
theorem
denseRange_zpow_iff_surjective
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedCommGroup G]
[OrderTopology G]
{a : G}
:
In a linearly ordered multiplicative group, the integer powers of an element are dense iff they are the whole group.
theorem
denseRange_zsmul_iff_surjective
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedAddCommGroup G]
[OrderTopology G]
{a : G}
:
In a linearly ordered additive group, the integer multiples of an element are dense iff they are the whole group.
theorem
not_denseRange_zpow
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedCommGroup G]
[OrderTopology G]
[Nontrivial G]
[DenselyOrdered G]
{a : G}
:
¬DenseRange fun (x : ℤ) => a ^ x
In a nontrivial densely linearly ordered commutative group, the integer powers of an element can't be dense.
theorem
not_denseRange_zsmul
{G : Type u_1}
[TopologicalSpace G]
[LinearOrderedAddCommGroup G]
[OrderTopology G]
[Nontrivial G]
[DenselyOrdered G]
{a : G}
:
¬DenseRange fun (x : ℤ) => x • a
In a nontrivial densely linearly ordered additive group, the integer multiples of an element can't be dense.