Documentation

Mathlib.Topology.Filter

Topology on the set of filters on a type #

This file introduces a topology on Filter α. It is generated by the sets Set.Iic (𝓟 s) = {l : Filter α | s ∈ l}, s : Set α. A set s : Set (Filter α) is open if and only if it is a union of a family of these basic open sets, see Filter.isOpen_iff.

This topology has the following important properties.

Tags #

filter, topological space

The topology on Filter α is generated by the sets Set.Iic (𝓟 s) = {l : Filter α | s ∈ l}, s : Set α. A set s : Set (Filter α) is open if and only if it is a union of a family of these basic open sets, see Filter.isOpen_iff.

Equations
theorem Filter.isOpen_setOf_mem {α : Type u_2} {s : Set α} :
IsOpen {l : Filter α | s l}
theorem Filter.isOpen_iff {α : Type u_2} {s : Set (Filter α)} :
IsOpen s ∃ (T : Set (Set α)), s = ⋃ t ∈ T, Set.Iic (Filter.principal t)
theorem Filter.nhds_eq {α : Type u_2} (l : Filter α) :
nhds l = Filter.lift' l (Set.Iic Filter.principal)
theorem Filter.nhds_eq' {α : Type u_2} (l : Filter α) :
nhds l = Filter.lift' l fun (s : Set α) => {l' : Filter α | s l'}
theorem Filter.tendsto_nhds {α : Type u_2} {β : Type u_3} {la : Filter α} {lb : Filter β} {f : αFilter β} :
Filter.Tendsto f la (nhds lb) slb, ∀ᶠ (a : α) in la, s f a
theorem Filter.HasBasis.nhds {ι : Sort u_1} {α : Type u_2} {l : Filter α} {p : ιProp} {s : ιSet α} (h : Filter.HasBasis l p s) :
Filter.HasBasis (nhds l) p fun (i : ι) => Set.Iic (Filter.principal (s i))
theorem Filter.tendsto_pure_self {X : Type u_4} (l : Filter X) :
Filter.Tendsto pure l (nhds l)

Neighborhoods of a countably generated filter is a countably generated filter.

Equations
  • =
theorem Filter.HasBasis.nhds' {ι : Sort u_1} {α : Type u_2} {l : Filter α} {p : ιProp} {s : ιSet α} (h : Filter.HasBasis l p s) :
Filter.HasBasis (nhds l) p fun (i : ι) => {l' : Filter α | s i l'}
theorem Filter.mem_nhds_iff {α : Type u_2} {l : Filter α} {S : Set (Filter α)} :
S nhds l ∃ t ∈ l, Set.Iic (Filter.principal t) S
theorem Filter.mem_nhds_iff' {α : Type u_2} {l : Filter α} {S : Set (Filter α)} :
S nhds l ∃ t ∈ l, ∀ ⦃l' : Filter α⦄, t l'l' S
@[simp]
theorem Filter.nhds_bot {α : Type u_2} :
@[simp]
theorem Filter.nhds_top {α : Type u_2} :
@[simp]
theorem Filter.nhds_pure {α : Type u_2} (x : α) :
@[simp]
theorem Filter.nhds_iInf {ι : Sort u_1} {α : Type u_2} (f : ιFilter α) :
nhds (⨅ (i : ι), f i) = ⨅ (i : ι), nhds (f i)
@[simp]
theorem Filter.nhds_inf {α : Type u_2} (l₁ : Filter α) (l₂ : Filter α) :
nhds (l₁ l₂) = nhds l₁ nhds l₂
theorem Filter.monotone_nhds {α : Type u_2} :
theorem Filter.sInter_nhds {α : Type u_2} (l : Filter α) :
⋂₀ {s : Set (Filter α) | s nhds l} = Set.Iic l
@[simp]
theorem Filter.nhds_mono {α : Type u_2} {l₁ : Filter α} {l₂ : Filter α} :
nhds l₁ nhds l₂ l₁ l₂
theorem Filter.mem_interior {α : Type u_2} {s : Set (Filter α)} {l : Filter α} :
l interior s ∃ t ∈ l, Set.Iic (Filter.principal t) s
theorem Filter.mem_closure {α : Type u_2} {s : Set (Filter α)} {l : Filter α} :
l closure s tl, ∃ l' ∈ s, t l'
@[simp]
theorem Filter.closure_singleton {α : Type u_2} (l : Filter α) :
@[simp]
theorem Filter.specializes_iff_le {α : Type u_2} {l₁ : Filter α} {l₂ : Filter α} :
l₁ l₂ l₁ l₂
theorem Filter.nhds_atTop {α : Type u_2} [Preorder α] :
nhds Filter.atTop = ⨅ (x : α), Filter.principal (Set.Iic (Filter.principal (Set.Ici x)))
theorem Filter.tendsto_nhds_atTop_iff {α : Type u_2} {β : Type u_3} [Preorder β] {l : Filter α} {f : αFilter β} :
Filter.Tendsto f l (nhds Filter.atTop) ∀ (y : β), ∀ᶠ (a : α) in l, Set.Ici y f a
theorem Filter.nhds_atBot {α : Type u_2} [Preorder α] :
nhds Filter.atBot = ⨅ (x : α), Filter.principal (Set.Iic (Filter.principal (Set.Iic x)))
theorem Filter.tendsto_nhds_atBot_iff {α : Type u_2} {β : Type u_3} [Preorder β] {l : Filter α} {f : αFilter β} :
Filter.Tendsto f l (nhds Filter.atBot) ∀ (y : β), ∀ᶠ (a : α) in l, Set.Iic y f a
theorem Filter.nhds_nhds {X : Type u_4} [TopologicalSpace X] (x : X) :
nhds (nhds x) = ⨅ (s : Set X), ⨅ (_ : IsOpen s), ⨅ (_ : x s), Filter.principal (Set.Iic (Filter.principal s))
theorem Filter.Tendsto.nhds {α : Type u_2} {X : Type u_4} [TopologicalSpace X] {f : αX} {l : Filter α} {x : X} (h : Filter.Tendsto f l (nhds x)) :
Filter.Tendsto (nhds f) l (nhds (nhds x))
theorem ContinuousWithinAt.nhds {X : Type u_4} {Y : Type u_5} [TopologicalSpace X] [TopologicalSpace Y] {f : XY} {x : X} {s : Set X} (h : ContinuousWithinAt f s x) :
ContinuousWithinAt (nhds f) s x
theorem ContinuousAt.nhds {X : Type u_4} {Y : Type u_5} [TopologicalSpace X] [TopologicalSpace Y] {f : XY} {x : X} (h : ContinuousAt f x) :
ContinuousAt (nhds f) x
theorem ContinuousOn.nhds {X : Type u_4} {Y : Type u_5} [TopologicalSpace X] [TopologicalSpace Y] {f : XY} {s : Set X} (h : ContinuousOn f s) :
ContinuousOn (nhds f) s
theorem Continuous.nhds {X : Type u_4} {Y : Type u_5} [TopologicalSpace X] [TopologicalSpace Y] {f : XY} (h : Continuous f) :
Continuous (nhds f)